
Computers + Storytelling Teaching + Learning

Teaching and Learning With Interactive Fiction

Brendan Desilets

Second Edition
May 2015

This work is licensed under a Creative Commons
Attribution-NonCommercial-ShareAlike 4.0 International
License.

Copyright 2015 by Brendan Desilets

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/

 2

Preface

 Are you one of those fed-up English teachers who
can't wait for the standardized testing boom to go bust?
While you're waiting, would you like to try a highly-
motivational literary form that can help students to think
more clearly, build their reading skills, and even enable
them to write better? And, with all those improved skills,
might you even hope to see those nasty test scores go
up a bit?

 Or are you a university instructor, looking for a way
to integrate science and the humanities, without
abandoning either one? Meanwhile, would you like to
explore a medium that comes with a broad array of
sophisticated writing-process tools?

 Or are you simply interested in teaching and
learning in the Information Age, without any social-
media hype?

 If you're in any of these categories, this book may
be for you. It introduces a form of computer-based
literature called interactive fiction, and shows you how
this form dovetails with the goals of most students,
teachers, and parents. It shows you how to get started
with this challenging form, and it provides lots of
instances of the form, most of them free of charge.

 3

What is Interactive Fiction?

 Interactive fiction, sometimes called text-adventure
gaming or IF, is a form of narrative literature in which the
reader plays the part of a character in a story. In
interactive fiction, as it was originally defined in the
1980’s, the reader indicates what she wants the
character to do by typing ordinary sentences at a
computer keyboard.

 By far, the most difficult aspect of interactive fiction,
both for educators and for students, is learning the form
itself. Applying interactive fiction to teaching and
learning is relatively easy. As a result, this book will offer
lots of guidance on getting started with interactive
fiction. It will include a getting-started section for adults
and another such section for younger people.

IF and Thinking Skills

 Perhaps the most obvious way in which interactive
fiction, also known as IF, promotes learning is that it
stimulates and demands critical and creative thinking.
This book will offer some ideas about improving thinking
and will show how IF promotes problem-solving skills in
uniquely effective ways.

 4

Elements of Literature

 Though interactive fiction always requires some
level of gamelike problem-solving, it is also a true form
of literature. Works of IF, or “interactive fictions,” feature
plots, characters, setting, points of view, themes, tones,
and all manner of stylistic variation. And, because of the
unusual way in which IF readers make their way
through stories, interactive fiction offers, and even
enforces, a natural way to pause and consider these
literary elements. This book will offer practical
suggestions for using interactive fiction to study
important literary concepts, the kinds that build better
readers and even (sometimes) enhance test scores.

Fluency

 Reading and literature teachers sometimes fight
about the precise role of oral fluency in building good
reading skills. It's clearly possible to overstress the
importance of fluency, especially in the classroom
teaching of students who have gone beyond early
reading. Still, it's important for students to read with a
reasonable level of quickness and fluidity, and there are
ways to improve fluency in readers of all ages. As it
happens, interactive fiction works extremely well for
reading aloud. And this book will offer a specific
technique that uses IF to build fluency in a way that few

 5

other literary forms can match.

Interactive Fiction and the Writing Process

 Most young readers like interactive fiction a lot,
especially when they have mentors to help them with
the genre. Often, these readers want to start writing IF,
even before they've achieved much skill in reading it.
Fortunately, it's possible for people of almost all ages to
write interactive fiction to write interactive fiction, using a
number of “authoring systems,” which take some of the
sting out of creating computer-based literature. In this
volume, we’ll offer introductions and tutorials to three
authoring systems. Two of these, Adrift and Quest, use
menus and forms to make IF writing easier. A third
system, known as Inform 7, allows students to work on
their expository writing skills as they craft interactive
narratives. This book will have suggestions about using
Inform 7 with students aged eleven to eighty (more or
less).

Teaching and Learning Content with Interactive
Fiction

 Interactive fiction, then, is a great way to build a
variety of reading, writing, and thinking skills. But it can
present content, too. This book will focus mostly on skill
building, but it will also look at several stories that
present worthwhile content, ranging from the 1893

 6

World's Fair, to the early days of nuclear weaponry, to
the delivery of candy grams in a middle school.

Some Ground Rules

 Mostly because this book has separate sections for
kids and adults, some of the material seems, and is,
repetitious. However, some of the redundancies are
adapted for their particular purposes. For instance, the
example stories used to illustrate tutorials are often very
similar to each other, but the versions for young people
are actually somewhat different.

 This book is offered under a Creative Commons
Attribution-NonCommercial-ShareAlike 4.0 International
License. In other words, you’re more than welcome to
use whatever you find here. However, you must
attribute what you use to its author, and you must use it
in a non-commercial way. Also, if you build material of
you own from what you find you here, you must share
what you build freely.

Updates of This Book

 This book, in a frequently-updated form is available
at the website “Teaching and Learning with Interactive
Fiction” (http://bdesilets.com/if). Like the website, the
current volume has two large sections. The longer first
section, “Teaching with Interactive Fiction,” is for adults.

http://bdesilets.com/if

 7

The second section, “Fun and Learning with Interactive
Fiction,” is for younger people. The author is glad to
respond to queries, at bdesilet@yahoo.com.

 “Teaching With Interactive Fiction” deals with
reading interactive fiction in a way that will probably
appeal most to teachers of younger students, aged ten
to sixteen, or so. Some of its sections on writing IF
focus on younger kids, too. The sections about writing
interactive fiction with a system called Inform 7 are a bit
different, though. These chapters are more relevant to
university teaching.

 This book offers tutorials on three different systems
for writing interactive fiction. Readers have often praised
the usefulness of such tutorials, but they do have at
least one clear disadvantage. Since the authors of
systems for writing IF often refine and change their
systems, it is impossible to guarantee that each tutorial
will work as well tomorrow as it does today. Still, the
systems are stable enough to make the tutorials
potentially helpful, if not perfect.

mailto:bdesilet@yahoo.com

 8

Table of Contents

Teaching With Interactive Fiction
(Mainly for Adults)

Chapter 1 – What is Interactive Fiction?......................10
Chapter 2 – The Pain and Promise of the Parser…….14
Chapter 3 – Interactive Fiction and Critical Thinking…38
Chapter 4 – Interactive Fiction and the Reading
 Process………………………………………………54
Chapter 5 – Building Fluency with Interactive Fiction ..64
Chapter 6 – Creating Interactive Fiction with Adrift…..77
Chapter 7 – Creating Interactive Fiction with Quest on
 the Web……………………………………………..109
Chapter 8 – Inform 7 and the Writing Process………135
Chapter 9 – Why Inform 7?..200
Chapter 10 – The Writer's Self in Interactive Fiction..243
Chapter 11 – Recommended Works of Interactive
 Fiction……………………………………………….262
Chapter 12 – An Interactive Classic from the
 Commercial Era: Arthur, the Quest for
 Excalibur…………………………………………….281
Chapter 13 – An Interactive Classic from the Modern
 Era: The Firebird…………………………………...291
Chapter 14 – An Interactive Fiction Competition Winner:
 Winter Wonderland………………………………...318
Chapter 15 – An Interactive Tragedy: Photopia……..320
Chapter 16 – An Interactive Fiction About Middle School
 Students: The Enterprise Incidents………………324

 9

Chapter 17 – Acquiring Interactive Fiction…………338

Fun and Learning With Interactive Fiction
(Mostly for Kids)

Chapter 18 – What is IF?..348
Chapter 19 – Why Kids Like Interactive Fiction…...358
Chapter 20 – Top IF Stories for Kids………………..363
Chapter 21 – A Classic Interactive Fiction: Arthur: the
 Quest for Excalibur……………………………….375
Chapter 22 – A Funny Tale of Adventure:
 The Firebird………………………………………..381
Chapter 23 – A Middle-School Story: The Enterprise
 Incidents……………………………………………386
Chapter 24 – IF at Its Comic Best: Lost Pig and Place
 Under Ground………………………………………392
Chapter 25 – Writing Interactive Fiction With Adrift…417
Chapter 26 – Writing Interactive Fiction With Quest on
 the Web……………………………………………..436
Chapter 27 – Writing Interactive Fiction With
 Inform 7……………………………………………456
Chapter 28 – Getting Interactive Fiction……………484

Notes and References………………………………..493

 10

 11

Teaching With Interactive Fiction

Chapter 1 – What Is Interactive Fiction?

 Defining interactive fiction can be a tricky business,
but, for our purposes, it shouldn't detain us long.
Interactive fiction is a computer-based form of literature
in which the reader plays the part of an important
character, deciding, within limits, what action that
character will take. By typing ordinary natural-language
sentences at the keyboard, the reader decides where
the main character will go, what objects she will pick up
and use, how she will solve problems, and how she will
interact with other characters. Some works of interactive
fiction include pictures and sounds, but the stories
communicate mostly through words. Many students find
interactive fiction, also known as IF or adventure

 12

gaming, an enjoyable way to gain experience with all of
the major elements of literature (though point of view
takes an unusual twist or two), and teachers who are
comfortable with it soon find that it grows well in the
classroom, even if there's only one computer available.

 In current practice, writers often use the adjective
“parser-based” when discussing the kind of interactive
fiction that we're discussing here, since IF stories use a
“parser” to translate the reader's typed input into a form
that the story can use. However, not all computer-based
stories let the reader type commands in the form of
natural-language sentences, and not all computer-
based stories rely mostly on text. Stories that are
presented through pictures and invite viewer input
through mouse clicks or button presses are sometimes
called “graphical interactive fiction.” One notable
example of this genre is the story called Myst, and its
several sequels. Other stories rely on text, but do not
allow the reader to offer input through full sentences,
opting, instead for a “choose from a list” system. These
stories are often called “choice-based interactive fiction”
or “hypertext literature.” For an example, have a look at
“The Matter of the Monster” by Andrew Plotkin. It's
available at http://www.eblong.com/zarf/zweb/matter/.

http://www.eblong.com/zarf/zweb/matter/

 13

The Twine Logo

In recent years, hypertext literature has attracted

the attention of a good many educators. It's generally
easy to read, and, with the advent of an authoring
system called “Twine,” has become somewhat easy to
write. However, the parser-based input system is much
more open-ended than any point-and-click approach
can possibly be. It challenges the reader to compose
text in way that is both disciplined and creative. Parser-
based IF will be our main focus in this book, and, for our
purposes “interactive fiction” and “text-adventure
gaming” will refer to parser-based interactive fiction.

 The phrase “text-adventure gaming” raises another
issue about the nature of interactive fiction. Some works
of IF seem more like games than stories. Especially in
the early days of the genre, in the late 1970's and early
1980's, most works of interactive fiction were long on
problem-solving and maze-mapping, and short on plot,
character, tone, and theme. However, the best
interactive fictions have always included various
elements of literature. Today, even an IF story that
qualifies as a “puzzle fest” usually offers a substantial

 14

narrative. For instance, Bronze by Emily Short, has
often been described as “puzzle-oriented” work, but it's
also a finely-crafted tale that seldom fails to entrance,
and to shock, student readers.

 So far, we've been using the term “reader” to refer
to the person who is reading an interactive fiction and
also directing one (or occasionally more than one) of the
story's characters. Since this person actually does more
than reading, some writers refer to him or her as an
“interactor.” The character that the interactor “runs” is
often called the “player/character,” and any other
character is usually dubbed a non-player character or
NPC, a term borrowed from role-playing games.

 15

 Chapter 2 – The Pain and Promise of the Parser

 Readers love and hate interactive fiction largely
because of its challenges. In early interactive fictions,
the most renowned (and sometimes infamous) of these
challenges took the form of complex, difficult, multi-step
puzzles, and puzzles remain important in most IF
stories. Students often cite the gamelike, problem-
solving elements of interactive fiction as their favorite
facets of the genre, and teachers usually like IF puzzles,
too, as a gateway to improved critical and creative
thinking. In the chapter that follows this one, we'll take a
close look at interactive fiction as a tool for developing
thinking skills.

A T-Shirt, Commenting on a Very Complex IF Puzzle

 However, even in IF stories that eschew puzzles
entirely, parser-based literature offers real challenge. It's
“ergotic”; that is, the reader has to make a significant
effort just go get through the text. In parser-based
interactive fiction, for inexperienced readers, much of
this effort focuses of wrestling with the story's parser.

 16

The Parser

 In IF, the parser is the part of the story's computer
code that translates the reader’s input into something
that the story can deal with. Early interactive fiction,
such as Adventure, by Will Crowther and Don Woods,
generally used a “two-word” parser, which could
respond only to particular sentences of one or two
words. Usually, the first of the two words would have to
be a verb, but the reader could type “south,” and might
get a more or less reasonable response. “Get lamp”
would work too, especially if the story included an
available lamp. “Put the candle in the lantern” would
confound the two-word parser. But lots of two-word
combinations would go just as far beyond the parser's
ken. “What's up,” “Hello, world,” the widely popular
“Stupid parser” would all fail miserably to communicate
with the story.

 During the 1980's when interactive fiction became
an important commercial product, an American
company called Infocom introduced a more complex
parser, which could recognize and respond to a wide
variety of sentence types, though a vast majority of
natural-language utterances were not within its grasp.
This new parser could recognize all of the following
sentences.

Tie the rope to the mast.

 17

Put the blue scroll into the box.
Ask the troll about the hobbit.
Tell the hobbit about the troll.
Take all.
Give the sword to the gnome.
Ask the elf for a jewel.
Hit the shiny nail with the hammer.
Where is the silver coin?
What is a zorkmid?

Two Parser Problems

 The improvement here is pretty obvious, but, in a
way, the new parser is more deceptive than the old one.
With its expanded power and openness, it gives the
false impression, to some people, at least, that the
interactor can expect to type just about anything into the
story and get a sensible response. As the renowned IF
author and theorist Emily Shot has noted, this “false
promise” leads new readers to lots of frustration.
Consider this sequence of commands, from a video
blog on IF by Jason MacIntosh.

Interactor: Where am I?
Story's Response: That's not a verb I recognize.

Interactor: You don't understand “where”?
Story's Response: That's not a verb I recognize.

 18

Interactor: Boy, are you stupid!
Story's Response: You seem to want to talk to someone
but I can't see whom.

Interactor: :(
Story's Response: That's not a verb I recognize.

 This sort of tangle can be frustrating, but it can be
misleading, too. As IF author and polymath Andrew
Plotkin has noted, when new readers of interactive
fiction encounter problems with the parser, “That's a real
experience. The misconception is that that's the
intended interaction of the game, and that's what the
author has spent all of his time thinking about.” In truth,
the IF author's intent is far more benign. He or she
almost always spends lots of time and effort in trying to
make the reader's experience of the parser go a
smoothly as possible.

Taming the Parser

 For all its foibles, the interactive fiction parser is a
wonderful tool. Even its limitations, are, in a way,
advantages, since they tend to funnel the interactor's
input in a somewhat predictable and positive direction. If
the reader really could type any sentence at all into the
parser, he or she might well find that puzzles would
become almost impossible to solve. The parser, at its
best, functions as a set of “rules” that limits the number

 19

of possible solutions.

 The key to taming the parser is understanding its
limitations. In truth, even the most sophisticated IF
programs can deal with only a few kinds of English
sentences. In the 1980's, during the commercial heyday
of interactive fiction, the best of the available stories
came with elaborate printed documentation, much of
which dealt with the quirks of the parser in general and
with particular tweaks of vocabulary and grammar that a
particular story offered. Outstanding examples of this
documentation are still available, free of charge, at the
“Infocom Documentation Project” website, at
http://infodoc.plover.net/.

 If you are reading more recent works of IF, the
corresponding documentation is likely to be included as
part of the story itself. Many such stories advise the
reader to type “About” or “Intro” or “Help” to read the
docs.

 Here are some general guidelines about the parser.

 20

All works of interactive fiction, even the very earliest
ones, can recognize sentences like “take coin,” which
the story will consider to mean, “I want to take the coin.”
Most IF stories can recognize many more kinds of
sentences, but experienced readers often keep the two-
word pattern in mind, anyway. For example, IF stories
can now recognize “Take the gold coin,” “Take the gold
coin from the fountain,” or “Take the gold coin and give it
to the librarian.” However, an experienced reader may
type “Take coin,” before trying a more complex
formulation. If the story then asks, “Which coin do you
mean, the gold coin or the copper coin?” the player will
then clarify with the word “gold.” Once the
player/character has the coin, the interactor might try,
“Give the gold coin to the librarian.” In other words,
when in doubt, it’s often best to try the simplest possible
formulation.

 The same simplicity principle applies, in spades, to
the use of adverbs in readers' input, though IF stories
themselves use all parts of speech in their text. If
experienced readers want their characters to run really
fast to the west, they'll probably type “West” or “Go
west,” and get the desired result. “Run west” might also
work, but “Run really fast to the west” will surely
confound the parser.

 Many works of IF can recognize at least some
simple questions that begin with “who,” or “what.”
Most stories also use a variety of useful abbreviations,

 21

including “x” for “examine,” “g” for “again,” “z” for “wait,”
“i” for “inventory of what I’m carrying,” “l” for “look,” “n”
for “go north,” “s” for “go south,” and “u” for “go up.”

 “Look at the book” is equivalent to “examine the
book.” However, “look,” with no object means “look
around and report on what's nearby.” If the
player/character is in a particular place, such as a
kitchen, “Look at the kitchen,” will usually not produce
useful results. The word “look,” by itself, will work fine.

 Here are some of the more popular transitive verbs
that IF stories use.

Examine
Take
Open
Drop
Put
Give
Eat
Drink
Fill
Climb
Wear
Break
Burn

 Popular intransitive verbs include “look,” “listen,”
“jump,” and “undo,” which “undoes” the player's last
move.

 22

 Individual stories frequently use unusual verbs. Try
the “About” or “Help” command to find out about
nonstandard verbs in the story that you're reading.

 Conversing with other characters in IF can be lots of
fun, but it can be frustrating, too, mainly because
different stories use widely different conversation
systems. That's one reason the read the “About” or
“Help” file that comes with practically every IF tale. It
also helps to keep in mind several patterns that most
stories can understand. Directly talking to a character
with a command will often work; for example, “Miss
Voss, tell me about the magic stone.” Also, a reader can
often make progress by asking or telling a character
about something, as in “Ask the bartender about the
vampire.” “Talk to the bartender” will also produce good
results in some stories. Frequently, a story will interpret
a single word to mean that the character says the word.
In other words, “hello” will often mean the same as “say
‘hello,’” though it is sometimes necessary to type
out “say 'hello.'”

 23

Clash of the Type-Ins

 The best way to learn to use the IF parser is to work
through a story with an experienced reader of the genre.
However, not everyone has such a tutor on call. Still,
almost everyone does have a way to listen to
experienced interactors as they make their way through
a variety of interactive fictions. This free-and-easy tutor
takes the form of a hilarious podcast called “Clash of the
Type-ins” (http://rcveeder.net/clash/). In each episode,
hosts Ryan Veeder and Jenni Polodna, both
experienced IF readers and writers, read a story
together. Most episodes include a third participant, the
author of the story that's being read.

 From the “Clash” website, here's a list of the first
eleven episodes. You can't go wrong with any of them,
but listening to them in order is probably the most fun.

EPISODE ONE: You've Got a Stew Going! (February 6,

http://rcveeder.net/clash/

 24

2014)
In this, the first episode, Jenni Polodna plays Ryan
Veeder's first game, a game about rats. Jenni says the
word 'titular' kind of a lot. If horses ran the world,
keyboards would be weird.

EPISODE TWO: Dinner Bell (February 12, 2014)
Ryan plays a game based on a They Might Be Giants
song, a game that Jenni wrote for Apollo 18+20, a game
that has plagued Ryan's nightmares for years. Jenni
reveals that she has never played Tetris Attack. .yadot
suoiciled etsat uoy teb I

EPISODE THREE: It (April 16, 2014)
Jenni and Ryan play Emily Boegheim's It. It is the name
of the game. Cultural gaps are bridged. Murder is
attempted.

EPISODE FOUR: Taco Fiction, Part I (May 2, 2014)
In this one we play Ryan's IF Comp-winning Taco
Fiction, which is a game about crime. Emily and Jenni
do some heinous things in this game, but Ryan doesn't
even try to stop them. And you're about to listen to the
whole thing! Nobody is blameless.

EPISODE FIVE: Taco Fiction, Part II (May 15, 2014)
The thrilling conclusion of Emily and Jenni playing Taco
Fiction, which is a game about crime. Ryan unmasks all
the game's secrets, expounds on all of its social and

 25

ethical implications, and basically never stops talking.
Even this sentence is a form of Ryan talking. You can't
escape.

EPISODE SIX: Violet, Part I (July 11, 2014)
Jeremy Freese brings us his IF Comp-winning Violet, a
game painstakingly calculated to drive Ryan to the brink
of insanity and then drive him over that brink. And Jenni
just smiles and laughs! While her friend Ryan is falling
apart! Clearly whoever is writing this summary hasn't
completely recovered.

EPISODE SEVEN: Violet, Part II (July 14, 2014)
With Jenni's help, Ryan achieves self-actualization. His
mental energies finally suppress his somatic anxieties,
and he succeeds in escaping from the cramped cell of
repression and into the light and fresh air of true
awareness. He achieves this by solving Violet, by
Jeremy Freese.

EPISODE EIGHT: The Statue Got Me High (July 14,
2014)
Jenni and Jeremy play a game that Ryan wrote based
on a They Might Be Giants song. Hey, just like that other
game! But that game was weird, and creepy. This one
will be normal, and pleasant.

EPISODE NINE: A Day for Fresh Sushi (January 9,
2015)

 26

Jenni and Ryan play Emily Short's Speed-IF about an
angry fish.

EPISODE TEN: Bronze (January 10, 2015)
Emily Short brings us one of her fractured fairy tales
and Ryan works himself into a fanboy frenzy. Jenni tries
to remember Dom DeLuise's first name. Shameful
lunchtime secrets are revealed.

EPISODE ELEVEN: Nautilisia (January 20, 2015)
Crazed with power, Ryan demands that Emily Short and
Jenni play a game he wrote about a person who keeps
yakking about being in a coma. The person in the game
does not necessarily depict Ryan. I want to make that
clear.

Joys of the Parser

 The interactive fiction parser is worth all the hassles
it introduces. For one thing, it creates the impression
that the interactor is, in some odd way, writing the story,
even though the tale has an author who has provided its
plot, setting, tone, mood, characters, and themes. Is
this impression that the reader creates an already-
authored story just an illusion? No, it's not.

 To illustrate the truth of this seeming contradiction,
let's consider two transcripts. Each of these transcripts
shows one person's way through the first few moves of

 27

a famous IF story called Lost Pig, in which the
player/character is an orc named Grunk. The first
transcript is more typical of what experienced IF readers
would to with the story, but the second one represents
another approach that is not uncommon. In both
transcripts, the user input is marked with the “greater
than” symbol (>), as is traditional in IF.

Transcript One – A
Very Common
Approach

Lost Pig

And Place Under Ground

Release 1 / Serial number 070917 / Inform

v6.30 Library 6/11 S

(For help, use "HELP".)

Standard interpreter 1.1 (4F) / Library

serial number 04022

Pig lost! Boss say that it Grunk fault.

Say Grunk forget about closing gate.

Maybe boss right. Grunk not remember

forgetting, but maybe Grunk just forget.

Boss say Grunk go find pig, bring it

back. Him say, if Grunk not bring back

 28

pig,not bring back Grunk either. Grunk

like working at pig farm, so now Grunk

need find pig.

Outside

Grunk think that pig probably go this

way. It hard to tell at night time,

because moon not bright as sun. There

forest to east and north. It even darker

there, and Grunk hear lots of strange

animal. West of Grunk, there big field

with little stone wall. Farm back to

south.

>Inventory

Grunk have:

 torch (on fire)

 pants (Grunk wearing them)

>Go east.

Forest look dark. Pig probably some place

in there, but Grunk not know which way

to go. Not want end up lost in forest

with no pig.

>Go north.

Forest look dark. Pig probably some place

in there, but Grunk not know which way

to go. Not want end up lost in forest

 29

with no pig.

>Go south.

Grunk get in big trouble if Grunk go back

with no pig.

>Listen.

Grunk get quiet. Listen for noise in

dark.

Grunk hear noise! It come from some place

in bushes, but Grunk not sure which way

it come from.

>Listen.

Grunk get quiet. Listen for noise in

dark.

When Grunk really quiet, try looking

around some more. There, hear noise

again!

It come from northeast. Must be pig,

hiding in bushes.

[Grunk score go up one.]

>Go northeast.

If that where pig go, that where Grunk

go. It hard to see where Grunk going to,

 30

because there so much dark and leaves and

branches here. Then suddenly, there

not ground here any more!

Oof! Ow! Umf! Ugh!

Grunk fall down deep hole! Drop torch.

Torch go out when Grunk land on it, so

now it dark, too.

Hole

Grunk at bottom of deep, dark hole. It

even smell like deep, dark hole. There

some light that come from tunnel to east;

that how Grunk see where Grunk at.

Look like there maybe stairs at west side

of hole that go up to outside, but

them all broken now. There big crack in

ground near stairs, too.

Grunk see torch (black and sooty) here.

Transcript Two – A Fairly Common Approach, With
“Attitude”

Pig lost! Boss say that it Grunk fault.

Say Grunk forget about closing gate.

Maybe boss right. Grunk not remember

 31

forgetting, but maybe Grunk just forget.

Boss say Grunk go find pig, bring it

back. Him say, if Grunk not bring back

pig, not bring back Grunk either. Grunk

like working at pig farm, so now Grunk

need find pig.

Lost Pig

And Place Under Ground

Release 1 / Serial number 070917 / Inform

v6.30 Library 6/11 S

(For help, use "HELP".)

Outside

Grunk think that pig probably go this

way. It hard to tell at night time,

because moon not bright as sun. There

forest to east and north. It even darker

there, and Grunk hear lots of strange

animal. West of Grunk, there big field

with little stone wall. Farm back to

south.

>Inventory

Grunk have:

 torch (on fire)

 pants (Grunk wearing them)

>Scream.

 32

RAAARRRR!

That fun! Grunk like shouting.

>Take off pants.

OK, pants off.

>Burn pants.

(with torch)

Grunk set pants on fire. Mmm. Grunk like

fire.

>Look at forest.

Many tree and bush and leaf and branch

and other plant like that. That what

forest mean. It dark, too. Pig probably

some place in there, but Grunk not know

which way to go.

>Jump.

Grunk jump and jump, but moon still too

high to reach.

>Look at the wall

Wall made of many big rock. It not very

tall; Grunk lots taller than wall. Maybe

it too hard, find enough big rock to make

big wall. There field on other side of

wall.

 33

>Kick wall.

Grunk remember last time Grunk try

hitting rock. It hurt Grunk more than it

hurt rock.

Grunk hear noise! It come from some place

in bushes, but Grunk not sure which way

it come from.

>Kiss wall.

That only make sense for person and

animal and thing like that.

>Burn forest.

(with torch)

That maybe dangerous. But then if forest

all burned up, pig not have any place

to hide, so maybe it really good idea.

Grunk not sure. That really what Grunk

should do?

>Burn forest.

(with torch)

Grunk hold torch up to tree. Tree start

to burn. Then other tree start to burn.

And other tree. And other tree. Then

Grunk hear pig squeal! Pig run out of

forest, and it not even see Grunk until

 34

after Grunk grab it. Silly pig!

Ha ha. Grunk smart, catch pig. Grunk get

to go back to farm now. Maybe boss say

that Grunk do good job. Fire go toward

farm, too. There lots of tree to burn.

Fire go even faster than Grunk.

Uh oh. There lots of tree near farm, too.

Fire get there before Grunk. Farm burn

like tree. Grunk think that maybe boss

not say Grunk do good job, if boss find

out that Grunk make fire. Maybe it better

if Grunk not go back to farm after

all.

Oh well. At least Grunk get to keep tasty

pig.

 *** Grunk not bring pig back to farm

Grunk have 0 out of 7 that time.

Time for Grunk to RESTART or RESTORE a

saved story or UNDO what Grunk just do or

tell FULL score or just QUIT?

 35

> Undo.

Outside

[OK, Grunk undo that.]

>Listen.

Grunk get quiet. Listen for noise in

dark.

When Grunk really quiet, try looking

around some more. There, hear noise

again!

It come from northeast. Must be pig,

hiding in bushes.

[Grunk score go up one.]

>Go northeast.

If that where pig go, that where Grunk

go. It hard to see where Grunk going to,

because there so much dark and leaves and

branches here. Then suddenly, there

not ground here any more!

Oof! Ow! Umf! Ugh!

Grunk fall down deep hole! Drop torch and

pants. Torch and pants go out when

Grunk land on them, so now it dark, too.

 36

Hole

Grunk at bottom of deep, dark hole. It

even smell like deep, dark hole. There

some light that come from tunnel to east;

that how Grunk see where Grunk at.

Look like there maybe stairs at west side

of hole that go up to outside, but

them all broken now. There big crack in

ground near stairs, too.

Grunk see pants (black and sooty) and

torch (black and sooty) here.

Looking at the Transcripts

 These are, of course, transcripts of the same story.
They have the same opening text, they introduce the
same character, and they eventually respond to the
same required moves; namely, listening and going
northeast. However, the transcripts are significantly
different, too, reflecting the different approaches and
attitudes of the readers who contributed to them. The
first transcript proceeds in a straightforward, problem-
solving way, and, not surprisingly, it comes to the
required moves much faster than the second transcript.
It also creates a different impression of the
player/character, since he, too, operates in direct and
reasonable way.

 The second transcript suggests that the interactor

 37

has a bit of an “attitude,” and, as a result, Grunk seems
less sensible, too. The second transcript is also longer
and more meandering, but it uncovers more of the
comic nature of the story. The less rational approach
also reveals an important fact that turns out to be
essential for later problem-solving: the fact that the torch
is just as good for burning things as it is for lighting.

 These transcripts highlight one way in which one
person's (or group's) reading of “Lost Pig” can differ
significantly from another. Particularly in stories that
require the reader to explore a large number of
locations, readers often differ even more markedly.
Some readers, or classes, stop exploring new locations
as soon as they find a puzzle to solve, moving on to
new places only when they're solved the puzzle or
determined that they can solve it only by finding new
tools in new locations. Other interactors take the
opposite approach, exploring as far as they can before
trying to solve puzzles. Teachers who are guiding
multiple classes through the same IF story at the same
time often find students asking which class is farthest
“ahead” in the narrative. The answer, if there is one,
often hinges on how the classes are approaching the
story, more than on a counting up of places visited or
problems solved.

 Without the open-ended parser, which invites the
reader to bring his or her own personality to the story,
the sort of variation that we see among these

 38

approaches and their resulting narratives could not
happen, at least not to the same degree. And, without
this sort of variation, students would not experience the
highly-motivational sense of agency that interactive
fiction offers.

The Teacher as Parser

 In a classroom, the teacher serves as the students'
first parser, translating suggested student input into a
form that the story's parser can understand. Suppose,
for example, that uninitiated students find that their
player/character is threatened with capture in a
churchyard that features a large tombstone. In this
situation, a student might suggest that the teacher type,
at the story's command prompt, “Get out of sight behind
the gravestone.” This suggestion, of course, makes
good sense, but it would only confuse the parser,
resulting in an error message. The teacher might
translate this request into the typed command, “Hide
behind the tombstone,” which would produce the
desired result. In addition, the teacher might recognize a
“teachable moment” for helping students to understand
the nature of the parser, with its many weaknesses and
its considerable value.

 39

Chapter 3 – IF and Critical Thinking

Effective Thinking

 Critical and creative thinking are about as central to
any form of real education as any skills can possibly be.
Even standardized tests claim (not too convincingly) that
they want to test thinking, though it’s pretty hard to
figure out how bubbling the in right circle can really
show good thinking in an strong sense of the word. So,
what is good thinking, in a strong and clear sense?

We can understand the thinking processes involved
in interactive fiction and in many other contexts as an
application of Robert J. Sternberg's componential theory
of intelligence. Expressed in a 1984 article
in Educational Leadership ("How Can We Teach
Intelligence?" Sept., 38-48) and elaborated on in his
book Intelligence Applied (1986, New York: Harcourt),
Sternberg’s theory tries to understand intelligence partly
in terms of three kinds of component processes.
"Metacomponents" control intelligent behavior by
Tanning, monitoring, and evaluating it. "Performance
components," such as inferring similarities and
differences, actually carry out the plans for thinking that
the metacomponents decide on. And "knowledge
acquisition components" enable the thinker to gain new
information, including information that the other kinds of
components may use. For example, if I were deciding to

 40

buy one of two automobiles, the metacomponents of my
intelligence would enable me to choose comparing and
contrasting as part of my strategy for making a good
decision. I would also use metacomponents to monitor
my strategy as I used it and to evaluate its outcome.
The actual comparing and contrasting, though, would be
performance components; and my techniques for
gathering information about the cars, such as reading
about them or directly inspecting them, would be
knowledge acquisition components. Interactive fiction,
like any kind of literature, involves all three kinds of
components, but it offers an especially compelling
approach to metacomponents in that it forces readers to
think about how they are controlling their thinking.

Recognizing Problems in Planetfall and Aotearoa

 At the beginning of one classic work of interactive
fiction, Steve Meretzky's Planetfall (1983, Infocom), the
reader must exercise a metacomponent that textbooks

 41

seldom ask students to use but that Sternberg considers
essential to intelligent behavior, the ability to recognize
and define the nature of a problem. Here is the
beginning of the story:

 "Another routine day of drudgery

aboard the stellar patrol ship Feinstein.

This morning's assignment for a certain

lowly ensign seventh class: scrubbing the

filthy metal deck at the port end of

Level Nine. With your patrol-issue self-

contained multi-purpose scrub-brush you

shine the floor with a diligence born of

the knowledge that at any moment dreaded

Ensign First Class Blather, the bane of

your shipboard existence, could appear."

 What exactly are the problems here? Well, one
problem seems to be to get the deck clean, a problem
that seems to call for persistent scrubbing, and so we
might try typing in at the computer keyboard, "Scrub
deck." If we do so, the program responds with the not-
too-exciting, "The deck looks a little cleaner now." But
perhaps a more important problem we face here is a
lack of knowledge of our surroundings. Maybe we
should activate a knowledge-acquisition component and
explore. Our location at the start of the story, Level Nine,
offers two exits, a corridor to starboard and a gangway
leading up. If we go up to Level Eight, we meet another
character, the aforementioned "dreaded Ensign

 42

Blather," who assigns us twenty demerits and
belligerently orders us to return to our post. Here we
have another apparent problem, which may suggest
solutions such as obedience, arguing, or a punch in the
jaw. In interactive fiction, we can try out any or all of
these approaches. If we do so, we find that punching
Blather causes him to dismember us (not to worry,
though; in interactive fiction, death is just the program's
way of telling us we've taken a misstep), that arguing
with Blather at length causes us to be thrown into the
brig, and that going back to work leads to a comic
encounter with a broccoli-like alien ambassador who
drips slime all over the deck we're shining. Eventually,
though, we learn that the last of these approaches
works best, since the ship we are on soon explodes and
our position on Deck Nine proves especially convenient
to an escape pod. In the pod, of course, we must again
identify the nature of the problem(s) we face and try to
deal with them; and only after we land on the planet to
which the pod takes us, will we figure out that the
central problem of the story is to bring the planet's
inhabitants back to life and to return to the stellar patrol.

 In Aotearoa, by
Matt Wigdhal (2010),
we find a similar
problem-recognition
challenge that confronts a younger protagonist on a

 43

Conservation Service vessel off New Zealand. This
time, Tim, a twelve-year-old contest winner, facing no
obvious problem, must travel around the boat on which
he finds himself, conversing with other characters and
gathering information that will help him later in the story.
In other words, the interactor who's running Tim's
character must, at least tentatively, identify a minimum
of one problem, a problem that hinges finding useful
information. Eventually, as in Plantefall, a disaster
about ship forces Tim to confront some more obvious
problems and to use the information that he has
gathered.

 For IF beginners Aotearoa, offers some special
advantages, in addition to its kid-friendly themes, which
include family relationships and dinosaur conservation.
The story, like a significant number of contemporary IF
works, includes a “novice mode,” which displays helpful
suggestions, based on the user's input.

Representing Problems in Wishbringer and Mrs.
Pepper's Nasty Secret

 Wishbringer (1985, Infocom), an award-winning
work of IF by Brian Moriarty, offers an amusing instance
of a second ability which, according to Sternberg,
underlies intelligent behavior, the ability to decide on
how to represent problem information. In this relatively

 44

easy interactive novel, the main character eventually
finds himself in the lair of a dangerous, light-hating
monster known as a grue, as he searches for, among
other things, grue's milk. In the lair, he finds a sleeping
baby grue and a refrigerator. When he opens the
refrigerator door, he notes that a small light goes off, but
since he's carrying his own source of light, he can see a
bottle of milk inside. Unfortunately, though, because of
the light, the baby grue wakes up and howls like "the
screeching of a subway," summoning a horrible monster
with "a calico apron and slavering fangs," which
promptly dispatches the protagonist. Now, after using a
few simple keystrokes to recall to the computer's
memory a "snapshot" of the game just before the
opening of the door, the readers have a problem to
solve, a problem that will probably lead to the question,
"How can I get the grue's milk out of the refrigerator?"
However, with (or better, without) a little coaching,
readers may see that other, more complete
representations of the problem can facilitate a solution.
This new formulation may be something like, "How can I
kill the baby grue in order to get the grue's milk safely?"
but, since there are no weapons in the story, this
representation doesn't help much. Sooner or later,
though, student/readers will probably try, "How can I
keep the baby grue asleep in order to get the grue's milk
safely?" a very helpful version in that the protagonist
has easy access to a blanket. Of course, other readers
may solve the problem through other sorts of alternative

 45

representations, as by drawing mental or physical
pictures of the scene, thus using visualizing techniques
that English teachers often urge students to try.

 At the beginning of Mrs. Pepper's Nasty Secret by
Jim Aiken and Eric Eve (2008), we find a different sort of
problem-restating challenge. Here's a slightly edited
version of the story's beginning.

 46

Walking home from school is mostly okay,

except for one big problem: Every day you

have to pass right by Mrs. Pepper’s

house. She seems to go out of her way to

cause trouble for you. Once, she came at

you with the garden rake, swinging it

 47

like it was a giant claw ... you still

shudder when you think of it.

Last Friday was a new low. You would

never, ever skateboard in her driveway —

that would be practically suicidal. But

somehow when you got to the driveway your

skateboard swerved, all by itself, as if

somebody had put a spell on it.

And then you fell off.

While you were picking grit out of the

ugly scrape on your skinned elbow, Mrs.

Pepper appeared out of nowhere and

snatched up your skateboard! She

screeched something about rowdy children,

trespassing, and needing to be taught a

lesson.

She swung the skateboard at you like it

was a bat, and then ran off with it,

cackling. Afterward you rang her

doorbell for what seemed like an hour,

begging her to give the skateboard back,

and she wouldn’t even come to the door.

And now it’s Monday afternoon, and here

you are, on your way home from school as

usual (but with no skateboard). Just up
ahead is Mrs. Pepper’s driveway.

 48

 Here, the authors have given us two clear problems
to consider. We apparently have to avoid more trouble
with Mrs. Pepper, and our player/character would clearly
like to get his or her skateboard back. Very soon,
though, using a trope favored by many IF authors, Aiken
and Eve offer an overriding problem. Here's the relevant
passage from the story.

>Go west.

On the Sidewalk by the Front Yard

To the north, across a sadly dried-up and

decrepit yard, stands Mrs. Pepper’s

house. You can also go east or west

along the sidewalk. The busy street is

to the south. A telephone pole plastered

with the scraps of old posters stands

here.

>Go north.

You take a cautious step onto Mrs.

Pepper’s property. When nothing terrible

happens, you take another, your curiosity

overcoming your apprehension of the batty

old woman.

Front Yard

The front yard is mostly bare dirt and

burned-out brown lawn, except for a few

 49

hardy weeds. A paved walkway crosses it,

leading from the sidewalk on the south up

to the front porch on the north. The

driveway runs past the yard on the east

side, and a tall fence guards what must

be the neighbors’ yard on the west.

Growing next to the walkway is a

scraggly, half-dead tree.

As you’re crossing the front yard, a

momentary lull in the traffic noise

allows you to hear something very odd.

Weakly, somewhere in the near distance, a

voice is crying, “Help me! Oh, please,

help me!” The voice is high-pitched and

very hoarse, as if whoever is calling for

help can barely speak at all.

You stop dead in your tracks, looking

around to see where the voice might be

coming from. It seems to be coming from

the upstairs window in Mrs. Pepper’s

house. You stare hard at the window, and

for a moment it seems something might be

moving there — but you can’t make out

what it might be. After a moment the

movement stops, and the voice falls

silent.

Could it have been your imagination? No,

you’re certain you heard something.

 50

And it was coming from inside the house.

 Now, we have a new problem, perhaps related to
the others in some way, but definitely more pressing.
Perhaps with a bit of guidance from their teacher,
students will soon determine that the problem of helping
Mrs. Pepper's prisoner will almost surely have to be
divided into smaller problems if it is to be solved. Even
before experimenting further, thoughtful student
problem-solvers might come up with a list of barriers
that their player-character is likely to face. This list will,
in effect, restate the overriding problem into a series of
more manageable issues. These sub-problems might
include determining whether Mrs. Pepper is at home,
getting into her house, finding the prisoner, and helping
the prisoner to escape. As students work through the
story, they will almost surely find that this sort of
problem-dividing skill will stand them in good stead.

Other Thinking Skills

 Like the problem-recognition instances in Planetfall
and Aotearoa, these problem-representation examples
are by no means unusual in interactive fiction. In fact,
every good piece of IF challenges the reader to use
these abilities and many more that Sternberg stresses.
IF readers must carefully monitor their solution
processing because surprising, and sometimes even
random, events can occur at unexpected times in
familiar settings, as in Wishbringer, when the Boot

 51

Patrol, a magical police troop consisting of gigantic,
smelly boots, suddenly threatens. Readers must
evaluate their solutions, since some apparently good
results, such as the capture of the apparently larcenous
title character in Bonnie Mongomery's The Firebird
(1999), may turn out to be serious mistakes. Mental and
physical resources must be allocated to various
problems, as by deciding which of the many available
objects to carry around in Laura Knauth's Winter
Wonderland (1999). Readers must apply old relations to
new situations, as in deciding whether to respect the
orders of Perelman, an important character in A Mind
Forever Voyaging (Meretzky 1985, Infocom), a work of
serious science fiction that many readers regard as one
of the finest pieces of IF yet written. Likewise, readers
must make automatic some elements of their
information processing, as by mapping the twenty-
five locations in Robin & Orchid by Ryan Veeder and
Emily Boegheim (2013).

How Do We Know That IF Works?

 IF is a form of text literature, a form that happens to
be particularly motivational for many students. Like
other forms of literature, it offers opportunities for
students to study a variety of literary themes and
techniques, including character, setting, and tone,
though a few such techniques, especially plot and point
of view, get new twists in IF.

 52

 Still, a teacher might wonder whether IF can really
help students to achieve goals that may seem a little
more arcane, such as controlling their own thinking
more effectively. In my own school, we try to help
students develop a variety of metacognitive techniques,
with special emphasis on planning; and so, several
years ago, I initiated a field study of IF and student
planning.

 How does one measure a student's ability to plan
well? Such a measurement would have to be
unobtrusive, since we would want to know, among other
things, whether a student could recognize an
appropriate situation for planning without prompting
from a teacher. Further, the student would have to have
a chance to show her own ability to create a good plan,
without the kind of prompting that multiple-choice or
short-answer instruments usually provide.

 My colleagues and I decided, then, that we would
need a brief essay test of some sort, a test that could
pass for a simple journal-writing assignment, while
enabling us to reliably observe students' planning skills.
After a course with Edys Quellmalz, a nationally-
prominent designer of essay tests of critical thinking, I
developed two prompts for journal writing assignments
that, answered in a complete and thorough way, would
require the student to set out an explicit plan. Then, with
the help of my colleagues, I worked out and tested a
scoring rubric.

 53

 In 1989, I tried out the instrument with a real class,
using one prompt before the students studied planning
through IF and another after they did so. The pre-test
showed little sensitivity to the need for planning, though
students who planned at all showed some skill at it. The
post-test revealed a clear improvement, statistically
signigicant at the p<.003 level.

 I do not claim much for this study. Indeed, I suspect
that one could obtain similar results though skillful
teaching for planning without any use of IF at all.
Nevertheless, IF offers, for students of literature, a
unique and appealing vehicle; and this study offers
evidence that it works, as part of a well-conceived effort
to help people think more effectively.

 And what about those unwelcome standardized
tests? As you might expect, there are no rigorous
studies on interactive fiction and high-stakes testing.
However, my middle school students, who received a
substantial part of their English language arts
instruction, over several years, did very well on the
Massachusetts (USA) Comprehensive Assessment
System (MCAS) tests, which were among the most
rigorous in the nation. In 1999, when the standardized-
testing boom was first gathering momentum, only one
grade in each middle school had to take the MCAS
Language Arts Test. In that year, as it happened, a
significant percentage of the tested students worked
with interactive fiction, and the school achieved the

 54

second highest MCAS Language Arts scores in the
state. In 2000, the tested grade, many of whom had
extensive interactive fiction instruction, tied for the best
language arts scores in Massachusetts. Through the
subsequent years of the deceptively-named “No Child
Left Behind” initiative, students who studied interactive
fiction continued to do well, even in the context of a
high-achieving school that reached every “Adequate
Yearly Progress” target through 2008.

Try It!

 With one student at the computer, even an older PC
or Mac, typing what a class wants to try and reading the
results aloud, and the rest of the class actively engaged
in mapping, keeping track of problems, and generating
suggestions, interactive fiction can become an engaging
experience for groups of almost any size, an experience
that involves students in the essential kind of thinking
that we call reading. With a large-screen display, the
group reading of IF stories can be even more dramatic.
IF encourages the kind of systematic, consciously
planned metathinking that Sternberg advocates and that
English teachers know their students need. And at its
best, it offers a surprise that is of great value: as a new
and vibrant (if not yet fully developed) form of literature,
it can spark a renewed sense of wonder at the power of
the written word.

 55

Chapter 4 – Interactive Fiction and the Reading
Process

The Pause Problem

 Suppose that you and your seventh-grade class are
reading aloud, in Chapter 9 of Catherine Patterson’s
famous young adult novel, Lyddie. Perhaps you're using
old-school round-robin techniques, or maybe you've
moved on to approaches like choral reading or echo
reading. In any case, you know that most of the
students in the class don’t especially like to read, but,
for now at least, the group seems quite caught up in the
narrative, as the main character goes to visit her new
friend, who, according to her housemates, is a notorious
labor agitator. Around the middle of the chapter, the
class encounters the word, “phrenologist,” complete
with sufficient context to enable the students to make a
very reasonable guess at its meaning. You know that,
according to recent high-stakes, high-profile statewide
testing, students in your school are not especially good
at determining meaning from context; and so you are
tempted to interrupt the reading process here to do a
little direct teaching, or perhaps just to remind students
to use techniques that they already know to glean the
meaning of the unfamiliar word. If you don’t stop now,
you know that you’ll lose an opportunity to do some
good teaching – the occasion just won’t be as fresh if I
wait until you reach the end of the chapter. But, of

 56

course, if you stop the process now, when the students
are enjoying a real aesthetic encounter with the printed
word, you may lose in motivation more than you gain in
skill-building.

 “Wouldn’t it be great,” you might muse, “if the author
of this story had built into the story’s design lots of good
stopping places – places that occur frequently, not just
at the end of chapters, and places that work
aesthetically, not just pedagogically?” But, of course,
novels are not built that way.

 Perhaps you decide to take the phrenology pause.
The kids are pretty patient and attentive, and you
manage a bit of clear, direct teaching, but nobody likes
breaking the story up this way, and the rest of the
chapter is just not as powerful, though you may decide
to keep subsequent interruptions to a minimum.

 The next day, the same class is
reading a passage in Arthur: the
Quest for Excalibur (1989), a novel-
length work of computer-based
interactive fiction by Bob Bates. As

the main character, the youthful, pre-coronation Arthur,
approaches a peasant’s cottage, he finds something
called a “slean.” Does the class pause in its reading
process to figure out what a slean is? In the context of
interactive fiction, the question is absurd. Of course we

http://www.ocf.berkeley.edu/~kevinw/a-g.html#arthur
http://www.ocf.berkeley.edu/~kevinw/a-g.html#arthur

 57

have to figure out what a slean is. If we don’t, we
probably won’t be able to continue reading the story at
all, at least not for very long. Unlike the Lyddie class,
this group doesn’t mind the pause at all. Indeed, the
author, in constructing his story, has made an aesthetic
judgment that just such a pause belongs at this point in
the tale.

How IF Pauses

 Interactive fiction, of course, is a literary form in
which authors must build pauses into their stories. Since
the reader plays the part of an important character,
deciding, within limits, what action that character will
take, the story must pause, quite frequently, to give the
reader a chance to contribute to the narrative.

Motivation

 The way kids take to interactive fiction is really quite
striking. Since 1985, the author of this book has
introduced about a thousand students, mostly aged
eleven through nineteen, to the genre. A clear majority
of them like it. In fact, it quickly becomes the most
popular form of literature with most of them, especially
when it’s read orally, in a large group. Students like
interactive fiction mainly because it’s an exciting way to
read a story, a way that lets them feel very active and
involved. They enjoy using IF to gain experience with all

 58

of the major elements of literature, such as plot, setting,
and point of view. Many young people also like the
problem-solving that comes with the IF experience.
These kids appreciate interactive fiction because it
challenges them to recognize and solve problems in
ways that no textbook seems able to match.

 Given the choice of reading conventional literature
or interactive fiction, most of the students in the author’s
classes choose IF, especially for reading aloud. This
result may seem unremarkable at first. After all, most
people, old or young, like to try something new.
However, even after numerous opportunities to choose
over a period of months, and even when the available
hard-copy reading includes highly motivational books,
magazines, and newspapers, most students prefer to
work with the always-challenging computer-based form.

Elements of Conventional Literature

 Beyond its motivational effect, a second important
advantage of IF is that it offers a straightforward way for
students to learn about the elements of conventional
literature. For example, though the IF reader has great
control over what the main character of a stories tries to
do, a work of IF still has a largely conventional plot, with
an exposition (often in the form of conventional text), a
rising action (albeit one in which the order of events can
vary somewhat from one reading to another), a climax,

 59

and a denouement (or, occasionally, more than one
possible ending). Unlike many other electronic
storytelling environments, such as Multi-User Simulated
Environments or Habitats (MUSEs or MUSHes),
interactive fiction does not present itself as a way for
students to create their own stories by interacting with
other authors within a digital mini-world. In IF, students
do get some sense of building their particular readings
of the stories. However, IF remains quite close to the
experience of reading a well-constructed novel or short
story.

Pausing in Interactive Fiction

 An important advantage of IF in the classroom, as
outlined at the beginning of this chapter, is its way of
providing – and, indeed, forcing – aesthetically valid
pauses in the reading process. Of course, not all
interactive fiction works equally well in offering the
pedagogically-best pausing points. In truth, many early,
and, in some ways, primitive works of IF, such as a well-
known series by Scott Adams (not the cartoonist) offer
little evidence that the author has made literary
calculations about the placement of pauses for puzzles.
In these stories, there are no extended passages of text
to interrupt, just a series of interrelated problems,
connected with a tight little plot; and the reader soon
comes to expect that the solution to one puzzle will lead
immediately to the next problem-solving exercise.

http://www.mud.co.uk/richard/mpublish.htm

 60

Several of these pieces, such as Pirate Adventure and
Adventureland (1978), can certainly engage and
entertain a puzzle-loving reader, but they offer little in
the way of theme and character development.
But works of interactive fiction in its more mature
variations offer a dramatically different set of
opportunities for literature teachers. Some of these,
such as Adam Cadre’s brilliant interactive short novel
Photopia (1998) move away from lengthy problem-

solving altogether.

In literarily complex stories like Photopia, the reader
must still pause often, sometimes briefly and
occasionally at greater length, to decide on what action
a character should take, but the appeal of the tale stems
almost entirely from conventional literary elements,
especially an intricately woven plot and highly engaging
characters. In one scene, for example, a father and his
precocious little daughter look up at the sky outside their
garage and talk about one of their common interests,
astronomy. The reader has no real problems to solve,

http://www.escape.com/~baf/if/a_Scott_Adams.html
http://www.escape.com/~baf/if/a_Scott_Adams.html

 61

but must stop to make some choices about what one of
the characters, in this case the father, will say, and
these pauses offer a literature teacher some remarkably
teachable moments. Gradually, the thoughtful student
reader, with the right kind of help, comes to see that the
astronomical concepts that emerge from the a touching
father-daughter dialogue illuminate another subplot of
the story, one in which the daughter, some years later,
weaves a tale of space travel for a younger girl who
idolizes her.

 Other mature IF stories, however, such as Arthur:
the Quest for Excalibur and Once and Future by Kevin
Wilson (1998) take a different approach, maintaining an
extensive puzzle-solving dimension, but adding rich
narrative elements. Often, in these stories, some of the
puzzles are far less mechanical than those in the
earliest IF, depending more on a good, clear sense of
plot, character, and theme. At one point in Arthur, for
instance, the reader, in the role of the title character,
encounters a knight who challenges the young Arthur to
a joust. Before the combat begins, the knight shows a
gentlemanly sense of fairness, insisting, for instance,
that Arthur wear the appropriate protective equipment
(“Knight in shining armor and all that, don’t you know?”).
But as the mock combat progresses, the knight feints in
a way that suggests that he may be about to cheat. If
the reader accepts the feint as sufficient evidence of
duplicity, the knight will always win the joust. If the

 62

reader understands the knight’s character well enough
to see that he would probably not cheat, Arthur will win,
gaining fighting skill and a useful trophy. Here, once
again, the teacher has an excellent opportunity to guide
students in the operation of an important literary
element, with the help of a pause that the author has
structured into his narrative.

 IF, then, helps teachers to focus on whatever
instruction they need to be doing, whether in response
to read needs of students or to the more artificial and
oversimplified demands of standardized tests.

Getting Organized for Teaching with IF

 Later chapters in this book discuss, in some detail,
particularly useful interactive fictions. These chapters
offer ways to organize instruction to maximize the
educational effects of these specific works, with their
highly-productive pauses. For now, let's have a look at
some more general tools for structuring our work with
students.

 Generally, it is helpful for each student to have an
interactive fiction folder to keep together print materials,
such as background information and maps, which are
necessary for most of the stories. Of course, electronic
folders will work fine for this purpose, when the
necessary technology is available. If, however, like most

 63

of us, the teacher has limited access to computers,
manila folders are excellent, too. The cover of a manila
folder makes a good place to have each student record
class goals for studying IF, such as learning about a
new form of literature, learning to manage his or her
thinking more effectively, and learning about a variety of
literary techniques, such as plot, character, setting, and
point of view.

 Some of the numerous pauses in a typical
interactive story introduce puzzles or problems for the
reader to solve. Typically, a classroom full of interactors
will be working on several of these problems at the
same time, and so will need to keep track of which
problems are current and which are solved. For this
reason, each student's IF folder should contain lists of
problems or puzzles encountered in each story, perhaps
in a small "blue book" of some sort. Each puzzle should
probably have a page of its own, to allow room to record
restatements of the problem, possible solutions, and
confirmed solutions.

 If students are to work on stories individually,
whether in or out of the classroom, they will generally
need a more generous supply of printed aids than those
who have a teacher always at hand. These materials
may include more detailed hints, maps, or even
"walkthroughs," which present solutions to a story's
problems. It's often quite fascinating, and surprising, to

 64

see how much careful reading and problem-solving a
student must do to complete a work of IF, even if he or
she has a walkthrough in hand.

Self-Evaluation in IF

 IF, then, with its unique structure of narrative
pauses, offers special opportunities for direct teaching.
However, it also adds an evaluative dimension of
considerable instructional power, an element that
operates even when the teacher isn’t around. How
many teachers have felt exasperated at a student’s
declaration that he or she has completed the reading of
a work of literature without understanding it at all? And
how many students, at least the more conscientious
ones, have felt even more frustrated in the same
circumstance? With most IF, though, it is simply
impossible, short of getting the problem solutions from
someone else, to finish a story without understanding it
in some depth. The careless or unskilled reader will
become “stuck” on one or more of the problems and will
thus be unable to continue beyond a particular point.
The aesthetically-placed pauses for problems thus
become, among other things, compelling and integrated
reading comprehension tests, perhaps the only such
tests that most students will take voluntarily.

 65

Chapter 5 – Building Fluency with Interactive Fiction

 As we've seen, interactive fiction is a form of text
literature in which the reader plays the part of an
important character, deciding, within limits, what action
that character will take. By typing ordinary English
sentences at the keyboard, the reader or, frequently, a
group of readers, decides where the main characters
will go, what objects they will pick up and use, how they
will solve problems, and how they will interact with other
characters. Many students find interactive fiction, also
known as IF or adventure gaming, an enjoyable way to
gain experience with all of the major elements of
literature (although point of view takes an unusual twist
or two), and teachers who are comfortable with it soon
find that it works well for oral reading in a one-computer
classroom, largely because it encourages students to
work collaboratively in solving the problems that the
protagonist encounters.

 Interactive fiction offers lots of instructional
advantages, including its motivational effects; its
usefulness in teaching conventional literary elements
such as plot and theme; its unique qualities as a
problem-solving tool; and its natural inclusion of helpful
stopping places for instruction. But interactive fiction
has a less obvious advantage, too. It’s a uniquely
powerful tool for helping students to read more fluently.

 66

Building Fluency

Fluency, the ability to read to read aloud quickly,
accurately, and expressively, is a quality that all
teachers would like their students to have. Fluent
readers enjoy reading more than other students, and
they have fewer comprehension problems. Fluency
helps children to move into the world of literate adults.

 Fortunately, we know a good deal about how to
teach fluency. The National Reading Panel, in Teaching
Children to Read (2000), concludes, from an analysis of
seventy-seven research studies, that “guided repeated
oral reading procedures” have a positive impact on
fluency. These procedures take a variety of forms, but
all of them require students to read the same passage a
number of times as a way of increasing fluency, and
most culminate in opportunities to show off newly-
developed fluency by reading for classmates. Some
educators place special stress on the opportunities for
relatively public performance, as a way to motivate
students to engage in repeated reading.

Repeated Reading

 Guided, repeated oral reading, then, works as a
teaching tool. However, it’s not the way literate adults
and kids usually read. The literature that we find in

 67

books and magazines, with the possible exception of a
poem here and there, does not ask the reader to peruse
the same text over and over again. But what if there
were a narrative form of literature that was especially
well suited to classroom performance in the form of
guided oral reading? And what if the same form
required repeated reading as an integral part of its
storytelling? And what if it were available free (or
almost free)? Computer-based interactive fiction offers
all of these qualities.

IF and Reading Aloud

 In my twenty years of work as a middle school
teacher, I found that students generally enjoy interactive
fiction a great deal. In fact, about thirty percent of my
students choose IF, over all other options, for individual
silent reading. However, they like IF much more when
they can read it together, with the level of preference
rising to about eighty-five percent. Why does this form
of literature motivate oral reading more than silent
reading? Three factors conspire to produce this result:
collaborative problem solving, reading text in
appropriately-sized chunks, and a unique sense of
creating a story while reading it.

Guided Reading

 In order to foster reading fluency effectively, it’s

 68

not enough to offer motivational oral reading–we have
to offer guidance as well. Sometimes teachers offer
coaching in oral reading “on the fly,” reminding students
of the need to pay attention to pitch, stress, and juncture
as they read; but, on other occasions, more formal
approaches, such as phrased-text lessons, with groups
of related words marked off for the reader, yield
dramatic results. In any case, explicit guidance requires
pausing in the reading process.

 An important advantage of IF in the classroom is its
way of providing–and, indeed, forcing–aesthetically
valid pauses in reading. Every work of interactive
fiction, regardless of its level of sophistication, must wait
for the reader’s input; and every author of an interactive
story has to make aesthetic judgments about the
placement of the waiting. Typically, even when a reader
is making rapid progress through a story, these periods
of waiting chunk the text into pieces that are seldom
more than a hundred and fifty words long. In other
words, interactive fiction stories naturally fall into brief
episodes that are ideal for guiding a novice reader.

IF and Repeated Reading

 How does interactive fiction incorporate repeated
reading? We can best answer this question by
considering a typical example of middle-school-
appropriate interactive fiction, Wishbringer, by Brian

 69

Moriarty. In this tale of fantasy and adventure, the main
character, a young postal clerk, must save his or her
town from the effects of some rather elaborate,
transformative, evil magic. Like most works of
interactive fiction, Wishbringer requires the main
character to visit a variety of locations. When the
character visits a location, the reader sees a description
like this one:

Rotary East

You’re on the eastern side of the

Festeron Rotary. A street branches off to

the east, towards the bay.

On the corner nearby stands a charming

little movie theater. Showtimes and

admission prices are listed on a schedule

near the closed entrance, and a marquee

announces the current feature.

If the protagonist goes east from Rotary East, he or she
comes to another location, the Pleasure Wharf,
described like this:

You’re standing near the entrance to the

Pleasure Wharf, the town’s most popular

tourist attraction. The Wharf extends

eastward into Festeron Bay, and a tidal

beach curves north along the shore.

 70

To the south stands a ramshackle old

building. Colorful lights, curious

electronic sounds and a neon sign beckon

you through the open entrance.

A big mailbox is nearby.

If the player/character enters the ramshackle old
building, he or she reads the description of a video
arcade:

This old building is the home of a sleazy

arcade, lined with coin-op video games.

The machines are all deserted and quiet,

except for one in the corner that emits a

feeble “wokka-wokka” sound.

A sign on the wall says, “All Games One

Token.”

 It should be clear, then, that, in Wishbringer, the
player/character spends a lot of time moving through

 71

various locations. He or she does lots of other things,
too, some of them much more interesting than mere
movement, such as talking to other characters and
solving problems. However, in order to make progress,
the protagonist must move around the tale’s map,
reading and understanding the descriptions as he or
she goes. Most works of IF make similar use of various
locations. In fact, a typical interactive story is often
described as a “romp around a map.”

 In any given story, some of the locations will require
only one or two visits, but others will require many more,
commonly at least a dozen, by the time a typical story,
which is around the length of a short novel, reaches its
conclusion. The location called “Rotary East,” as
described above, for instance, will almost surely be
visited by the player/character early in the story, as he
or she heads off to deliver a letter to the tale’s
northernmost locale. Later, the character will pass the
location again, as he or she tries to reach a mysterious
tower at the southern end of the story’s map. Later still,
the player/character will visit Rotary East on his or her
way to the Video Arcade, after obtaining a token to play
one of the games. At another time, the protagonist will
return to enter the theater. On another occasion, the
player/character will pass Rotary East on route to a
lighthouse that is located in the northeast corner of the
story’s territory. And all of these particularly purposeful
visits do not include many incidental passings, as the

 72

protagonist is chased by the antagonist’s police patrol or
as the player/character simply looks around without any
particular object in mind.

 Near the end of Wishbringer, the player/character
makes a climactic visit to a location called Rotary South,
a visit that underscores the importance of reading the
description of a location carefully and repeatedly.
Here’s the description of Rotary South:

This is the south side of the Festeron

Rotary. A road branches south, towards

Post Office Hill.

The Festeron Public Library, famous for

its museum of local historic artifacts,

stands proudly on the nearby corner.

 On this occasion, the library, which has seemed like
a bit of permanently-locked scenery throughout the
story, has suddenly become accessible because the
protagonist has obtained a key from the librarian’s
cottage. If the readers miss the importance of the
library, simply because they’ve read its description a
dozen times or more, they will not be able to solve the
story’s climactic problem.

 73

Approaches in the Classroom

 One of the principal advantages of interactive fiction
as a tool for building fluency is its flexibility. For some
students and classes, the repetition experienced in a
straightforward, guided, oral reading of a story will
suffice. Other learners require procedures that are a bit
more scripted and formal, though still unobtrusive. Still
others may need more rigorous and immediate
repetition.

 As one might imagine, students, who are
presumably reading each work of IF for the first time,
will have little idea, at first, which map locations require
frequent visits. But any teacher who has read an IF
story even once will have a very strong feel for which
locations require frequent visits. Using this information,
the teacher can develop a plan to help students with
moderate problems in fluency. For these learners, a
teacher can model good oral reading of each
description that will be repeated, by reading aloud the
initial instance or two of such descriptions. Then, the
teacher can assign the oral reading of each particular,
frequently-visited location, and perhaps its adjacent
venue, to a student who needs some fluency
development. From then on, the assigned student will
have an opportunity for repeated reading of the
description, with any guidance the teacher chooses to

 74

give, whenever the main character enters the assigned
location. Eventually, the student will, very likely, be able
to read the description with some smoothness and
expression.

 In some classes, a teacher may choose to keep the
assignment of students to particular descriptions rather
discreet, revealing the assignments to each student in
private. In other cases, as with most of my sixth
graders, students may be quite happy to “own” Rotary
South or the Video Arcade. In extremely sensitive
situations, such as those that I’ve occasionally
encountered with low-achieving eighth graders, the
teacher need not reveal the assignment at all. He or
she can simply remember to call on the particular
student whenever the appropriate destination is
reached.

 Of course, interactive fiction is not a one-size-fits-all
solution for students who need work in fluency. Some
students with more severe fluency problems, for
instance, will need several repeated readings of a
passage that occur in rapid succession, in order to
improve fluency. For this sort of rapid repetition, IF is
not dramatically better than other forms of literature, but
it’s no worse, either. If a student needs immediate
repetitions, and the teacher can provide opportunities
for this sort of work, the well-rehearsed reader will find
no more striking opportunity to show off his or her

 75

practiced fluency than an interactive story.

Issues and Problems

 Most middle school teachers do not have daily
access to the latest computer technology. Fortunately,
though, all-text interactive fiction makes only the lightest
demands on computer hardware. A Pentium II-based
computer can run all of the stories listed in this article
with no delays at all. When they originally appeared,
most of the commercial stories ran perfectly well on
Apple II machines.

Large-screen displays that a whole class can see at
once are a bit more of a problem; but, since IF stories
can be run with large font sizes, they can be displayed
without any sort of expensive projection equipment. A
large television/monitor, attached to the computer with a
VGA cable, with a Chromecast device, or with a similar
interface, does the job perfectly well.

 The real challenge of using interactive fiction in the
classroom is not technological at all — it’s literary. Most
adults have not learned a truly new form of literature
since they were introduced to novels and plays as
children; and IF is designed to be a challenging genre.
Learning the kinds of sentences that interactive stories
can “understand” is tricky in itself; and most IF
deliberately confronts the reader with problems that are

 76

somewhat difficult, even though walkthroughs and hints
are readily available. Because teachers are usually
accomplished readers, we may come to assume that,
for the most part, the reading of good literature is easy.
Interactive fiction challenges that assumption.

 Still, help is available. The welcome page for the
newsgroup rec.games.int-fiction
(http://www.faqs.org/faqs/games/interactive-
fiction/part1/) is very useful. The Interactive Fiction
Forum (http://www.intfiction.org/forum/) is even more
active. “A Beginner’s Guide to Interactive Fiction”
(http://www.brasslantern.org/beginners/beginnersguide.
html) by two outstanding IF authors, Stephen Granade
and Emily Short, offers succinct and clear suggestions.
For a young person’s perspective, try “Fun and Learning
With Interactive Fiction,” a section of this book designed
for kids. Fredrik Ramsberg’s “Beginner’s Guide to
Playing Interactive Fiction
(http://www.microheaven.com/IFGuide/) takes a
systematic, step-by-step approach that appeals to many
IF neophytes. It is distinctly helpful with the process of
downloading and using the software that’s needed to
run interactive fiction.

 The difficulties in learning IF, then, are certainly real,
but so are the resources; and the people of the
international interactive fiction community, a very active
and smart group of real enthusiasts, are always ready to

http://www.intfiction.org/forum/

 77

help “newbies.” For teachers who go to the
considerable trouble of learning this new form of
literature, IF will serve as a unique, perhaps even
indispensable, tool for building reading fluency.

 78

Chapter 6 – Creating Interactive Fiction With Adrift

 Once students have tried and enjoyed interactive
fiction, they often inquire about writing their own works
of IF. Frequently, students are impatient to get on with
the IF-writing adventure, and a realistic teacher may
have to rein them in a bit. It doesn't make much sense
to try to write in a genre that you don't really understand.

 Still, creating interactive fiction can be enjoyable
and educational. The necessary first step, if a real work
of fiction is the goal, is for the student-authors to
produce a non-interactive script of the works they hope
to produce. Creating a good script will require students
to apply the usual stages of the writing process:
prewriting, drafting, revising, editing, and publishing.

 Here's the script of a very simple interactive story.

“Lost Chicken” Script

You've made it to your home, as usual,

but it seems that you've forgotten your

key.

Lost Chicken

An Interactive Fiction by Brendan

Desilets

Outside Front Door

 79

You're outside your front door. The door

is to the west, and your front yard is to

the south.

You can see a doormat and an oak door

here.

>i

You are carrying:

 a pet treat

>x doormat

You find a note under the doormat and

pick it up.

>read note

The note reads, "The chicken hides the

spare."

>s

South Yard

This is the lovely south yard of your

home.

You can see Bronson Alcatt and a plaster

chicken (closed) here.

>look at Bronson

 80

Your very old cat, always a formidable

presence. He looks particularly grumpy

right now, as he rubs against his

favorite lawn ornament, a plaster

chicken.

>open chicken

Your irascible cat scratches you,

preventing you from getting at the

chicken.

>give treat to Bronson

Bronson gobbles up the treat. He looks

less grumpy now.

>open chicken

You open the plaster chicken, revealing a

key.

>take key

Taken.

>n

Outside Front Door

You're outside your front door. The door

is to the west, and your front yard is to

the south.

 81

You can see a doormat and an oak door

here.

>w

You unlock the door and enter your house.

Front Hall

You have made it inside, where Bronson

happily joins you.

 *** The End ***

 Of course, the script is just an early step. Even with
the best of scripts in hand, a writer needs a way to
create the interactivity that students enjoy so much.
Fortunately, though, a number of excellent authoring
systems for interactive fiction are available.

ZIL and TADS

 In the commercial heyday of IF (the 1980’s),
professional writers and programmers produced the
works with authoring systems that looked like other
programming languages. The most prominent publisher
of interactive fiction at this time was an MIT spinoff

 82

called Infocom. The writers who worked at Infocom
used a proprietary system called Zork Implementation
Language (ZIL). ZIL is available today, but it's not a
system that current writers use.

At present, the most popular authoring system of
the programming-language type is TADS 3 by Mike
Roberts. This is an outstanding authoring system in
many ways. It has excellent documentation, great
flexibility, and an active community of users. When
TADS first appeared in 1988 as shareware, it was the
only fully-featured system of its kind. Now, TADS is
completely free of charge.

 Of course, if you're not a teacher of computer
science, you're probably not interested in showing your
students how to program in a language that looks like C,
with a few bits of Pascal. The whole approach is just too
arcane for most of us. As an example, here's a bit of
TADS 3 code, courtesy of the “Get Me Writing” website
(http://www.getmewriting.com).

entryway: Room ‘Entryway’

“This large, formal entryway is slightly

intimidating:

the walls are lined with somber portraits

of gray-haired

men from decades past; a medieval suit of

armor<<describeAxe>>

http://www.getmewriting.com/

 83

towers over a single straight-backed

wooden chair. The

front door leads back outside to the

south. A hallway leads

north. ”

describeAxe

{

if (axe.isIn(suitOfArmor))

“, posed with a battle axe at the

ready,”;

}

north = hallway

south = frontDoor

out = frontDoor

;

+ frontDoor: Door ‘front door’ ‘front

door’

“It’s a heavy wooden door, currently

closed. ”

initiallyOpen = nil

dobjFor(Open)

{

action() { “You’d rather stay in the

house for now. “; }

}

;

 84

Inform

 In 1993, the British polymath Graham Nelson
introduced Inform, another authoring system of the
programming-language sort. By the end of 1996, the
system had developed into a very stable version, Inform
6, which came to rival TADS in popularity. In 2006,
Nelson published Inform 7, ushering in a dramatic
change. Inform 7 does not look very much like a
programming language at all. In fact, its source code is,
more or less, a subset of ordinary “natural language.”
Inform 7 is a tool of immense educative power, and it's
the topic of three separate chapters in this book.

 85

 Like TADS, Inform, in its varying versions, runs on
Windows, MacOS, and Linux, and features remarkably
thorough documentation. All versions of Inform are free.

Adrift and Quest

 In 1988, English developer Campbell Wild
introduced Adrift Developer, a Windows-only tool for
making IF stories with a minimum of programming.

 Adrift tries to provide most of the functions of TADS
and Inform, through a series of forms and menus. Adrift

 86

lacks the power and flexibility of TADS and Inform, and
it cannot approach the thoroughness of documentation
that characterizes the other systems. However, it is
probably the fastest way for students to produce simple
works of interactive fiction – and more advanced stories,
too -- complete with pictures and on-screen mapping.
Adrift started as commercial software, but is now free of
charge. An Adrift tutorial appears later in this chapter.

 In 1998, Alex Warren, a British developer, published
Quest, another user-friendly way to write interactive
stories. Quest started out as a Windows-only platform,
but it now offers a Web version as well. Like many Web
versions of PC software, Quest on the Web is
somewhat slow, buggy, and truncated, but it's usable.
Initially, Quest may involve a slightly steeper learning
curve than Adrift, but it has an advantage for educators
in that offers ActiveLit, a private place on the Web for
classes to use in working with interactive fiction. The
Quest website includes a helpful series of tutorials, at
http://docs.textadventures.co.uk/quest/tutorial/tutorial_in
troduction.html. These tutorials focus mainly on the
Windows variation of Quest. In the next chapter, we'll

http://docs.textadventures.co.uk/quest/tutorial/tutorial_introduction.html
http://docs.textadventures.co.uk/quest/tutorial/tutorial_introduction.html

 87

offer a tutorial on the Web version.

 88

A Tutorial for Adrift, Version 5

Since Adrift is probably the fastest way for students
to get their own IF stories up and running, we offer this
rather lengthy tutorial.

Adrift Developer costs nothing and is available on
the Web at
http://www.adrift.co.

For this tutorial, we'll use the story “Lost Chicken” as
an example. A transcript of this story appears earlier in
this chapter.

When Adrift Developer starts, it usually displays five
windows, using its “Simple Mode,” which is adequate for
this tutorial. The windows are labeled “Locations,”
“Objects,” “Tasks,” “Characters,” and “Events.”

http://www.adrift.co/

 89

Use these steps to get started with Adrift Developer:

1. Start the computer program called Adrift Developer.
Click on the “Home” tab at the top of the screen, if
that tab is not already selected.

2. Click on “Options” and then on “Bibliography.” Type
in the title of your piece of writing and your name, in
the appropriate spaces. Then, click on OK.

3. In the “Characters” section of the Adrift Developer
screen, you'll notice that one character, the
player/character, has already been created. Double-
click on the word “Player,” and type in the name of
your player/character. Then type a brief description
of your player/character in the appropriate space.
Click on the appropriate gender for your
player/character, male or female. Then click on OK.

Create your first location.
1. On the Adrift Developer screen, locate the

 90

section labeled “Add Items.” In this section, click
on “Location.”

2. In the form that opens, fill in the “short name” of
the location. This name should be three words
or fewer in length. For our “Lost Chicken” story,
we'll use “Outside Front Door” as the short
name of our first location.

3. Then, in the appropriate space, fill in the “long
description.” You can copy and paste the long
description from your word processor, if you
like. For our long description of “Outside Front
Door,” we'll use “You're outside your front door.
The door is to the west, and your front yard is to
the south.”

4. Click on “OK” when you have finished with this
form.

 91

5. You can use the same procedure to make more
rooms. For “Lost Chicken,” we'll create two
more locations, “Front Hall” and “South Yard.”
We won't need a long description for “Front
Hall.” Our long description of “South Yard” will
be “This is the lovely south yard of your home.”

6. Double-click on “Outside Front Door,” from your
list of locations. In the form that opens, click on
the “Directions” tab. Using dropdown menus
that appear, indicate that going west from
“Outside Front Door” will take the
player/character to “Front Hall” and that going
south from “Outside Front Door” will take the

 92

player/character to “South Yard.” When you've
indicated these directions, Adrift may ask if you
want these directions to work both ways. In
other words, Adrift may ask whether going east
from Front Hall should lead to “Outside Front
Door” and whether going north from “South
Yard” should bring the player/character to
“Outside Front Door.” For our story, we can
allow both of these two-way pairs.

Save and Test Your Story, So Far
1. Though Adrift is a solid and mature program, it is
important so save your work

 93

 frequently. It's a good practice to save several
 versions of your work, in case
 something goes wrong with your latest saved
 version.
2. To save your story, click on the circular icon in the
top left of the screen, and
 choose “Save As.”
3. To test your story, click on the green triangle in the
top center of the screen. This triangle is labeled, “Run
Adventure.” Adrift Runner will open and display
your story. Your player/character should be able to
move between the rooms you've created.

Create your first “object.”
 1. From the “Add Items” list, choose Object.
 2. In the form that opens, type in the name of the
 object. In our example, we'll create the doormat as
 our first item. Using the buttons and dropdown
 menus, indicate that this object is “dynamic” and
 that its initial location is “Outside Front Door.” A
 dynamic object is an item that the player/character
 can pick up.
 3. Then, in the “name” box, type “doormat” and then
 press the Enter key.
 Next, type “mat.” Now, we've signaled our intention
 to create an object named
 “doormat,” which the user can also refer to as “mat.”
 4. Next, type in the description of the object.
 5. Click on the Properties tab, and indicate that the

 94

 object should be mentioned in room descriptions.
 6. Click on “OK.
 7. You can use the same procedure to make more
 objects.

Create more objects.
 1. Next, let's create the object called the “note.” This
 object will be similar to the doormat, except that its
 location will be “hidden.”
 2. Now, let's create, or “implement,” the plaster
 chicken, which will contain the key. This object will
 be similar to the others, with several differences.
 1. It will be static, rather than dynamic.
 2. It is in the South Yard.

 95

 2. Its properties, accessed through the
 “properties” tab, will specify that
 1. it is a container,
 2. it can be opened and closed,
 3. it is closed, and
 4. it should be included in room
 descriptions.

 3. Finally, let's implement the key. It will be a
 dynamic object, and its initial location will be inside
 the plaster chicken.

 96

Set the Opening and Closing Text
 1. Click on the circular icon that appears in the top
 left corner of the Adrift Developer screen. From the
 menu that opens, choose “Introduction & End of
 Game.”
 2. The page that opens will have two tabs, one for
 the opening of the game and one for its ending.
 3. The “Introduction” tab allows for the creation of
 opening text, for specifying the story's first location,
 and for displaying, or not displaying, the description
 of the opening location.
 4. Fill in the opening text for your story, something
 like, “You’ve made it home as usual, but
 you’ve forgotten your key.
 5. Indicate that your opening location is Outside
 Front Door and that the story should display
 the description of the opening location.
 6. This would be a good time to save and test your
 story, so far.

Create your first “task.”
 1. A task is an action that the player/character must,
 or may, take to produce a certain result. Adrift has
 lots of built-in tasks, such as picking up an object,
 but you'll want to create your own, too. Tasks that
 you create generally override Adrift's built-in tasks.
 2. Our first example of a task will implement what
 happens when the player/character first takes the
 doormat, thus revealing the note. Recall that, when

 97

 we created the note, we placed it in the “location”
 called “hidden.” In other words, it's not anywhere in
 the story's world until we bring it in.
 3. In the “Add Items” section at the top of the
 screen, click on “Task.” A fairly complex window will
 open.
 4. With the Description tab selected, type in a name
 for the task. We'll use “Take Doormat.”
 Our “Task Type” will be “General.” (We could also
 implement this task as “Specific,” but, if we did, we
 would not be able to introduce the action
 called “move,” which Adrift does not normally
 understand.)
 5. In the box labeled “Enter any number of
 commands,” type in all of the commands that the
 reader will be able to use to activate the task. Put
 one command on each line. In our case,
 we'll list these commands:
 take mat
 take doormat
 move mat
 move doormat
 6. In the box labeled “Message to display on
 completion,” type something like “When you move
 the doormat, you find a note underneath it. You pick
 up the note and leave the mat where you found it.”
 7. Since we want the note to be revealed only once,
 uncheck the box that's labeled “Task is repeatable.”
 Then click on “Apply.”

 98

 8. Click on the “Restrictions” tab. Here we'll indicate
 what conditions must be met for the task to execute.
 In this case, our only restriction will be that our
 character must be in the location called “Outside
 Front Door.”
 9. However, as of this writing, the screen that you're
 looking at right now is a little buggy. It displays a
 large box, currently blank. When you create
 restrictions, the box is supposed to display them. It

 99

 should also allow you to change the order in
 which the restrictions are applied and to edit each
 restriction by clicking on it and then on an “Edit”
 button. However, when you've created a restriction,
 even if you make no mistakes in doing so, the
 restriction usually does not appear in the large box.
 To find out if the restriction is really in effect, you
 usually have to close the whole task-creation
 window by clicking on the “OK” button at the
 bottom of that window. When you do, you'll see that
 the name of your task appears on the “Task” list on
 the main screen of Adrift Developer. If you double-
 click on the name of your new task on the task list,
 and then on the “Restrictions” tag, the large box will
 list all the restrictions that you've created, just as it
 was supposed to all along. A bit later in this tutorial,
 when we create actions for a task, you'll work
 with a very similar big box that lists the actions that
 your task triggers. This box exhibits the same bug.
 9. With the “Restrictions” tab open, click on “Add.”
 Using the dropdown menus that appear, create the
 restriction that the player/character must be in the
 “Outside Front Door” location. Click on “OK” and
 then on “Apply.” You should now see
 your newly-minted restriction in the previously-blank
 list on the “Restrictions” tab. Your restriction should
 read, somewhat awkwardly, “The Player's Location
 must be location location 'Outside Front Door'

 100

 10. Click on the “Actions” tab and then on “Add.”
 11. Use dropdown menus to construct an action that
 moves the note from “Hidden” to “Held by the
 player.” Click on “OK” and then on “Apply.”
 12. Your action should now appear on the
 previously blank list of actions, in the nonstandard
 but functional form, “Move object 'a note' to held by
 character 'Player'
 12. Click on “OK” until the “Task – Take Doormat”
 window closes.

 101

Create a task that ends the story
 1. From the “Add Items” Section, click on “Task.”
 We'll call this task “Enter Front Hall.”
 2. This task will not require that we introduce any
 new verbs, and so our task type
 will be “Specific.”
 3. Using dropdown menus, indicate that the new
 task should “override” “player movement”
 “go west.”
 4. As a “Message to display on completion, use
 something like “You open the door and walk through
 it.”

 102

 5. Click on the “Restrictions” tab. Click on “Add.”
 6. Using the dropdown menus create the restriction,
 “The Player's Location must be location location
 'Outside Front Door'
 7. Click on “OK,” and “Apply.”
 8. Again, click on “Add” in the “Restrictions” tab.
 Using the dropdown menus, create the restriction,
 “Object, 'a key' must be held by a character 'player'”
 9. Click on “OK” and “Apply”
 10. Click on the “Actions” tab.

 103

 11. Click on the “End Game” tab, and choose “In
 Victory.”
 12. Click on “OK” and “Apply.” Click on “OK” again.
 13. Save your work, and try out your story by
 pressing the green button.

Create your first character.
 1. In the “Add Items” section, click on “Character.”
 2. In the “Proper Name” box, type your character's
 proper name, “Bronson Alcatt,” in our example. In
 the “Descriptor/Noun” box, type “cat.” In the
 “Description” box, type what you want the player to
 see when she types, “examine cat.”
 3. Click on the “Properties” tab.
 4. Using the first dropdown menu, change the
 character's location from “Hidden” to “At Location.”
 Then choose “Front Yard” as Bronson's location.
 5. Use similar dropdown menus to indicate that
 Bronson is “male” and “standing.”
 6. Click in the checkbox after “Is the character
 known to the player?”
 7. Click on OK.
 8. Once again, save your work, perhaps using a
 new filename, and click on the green button to try
 out your story.

 104

Create your first variable.
 1. Variables enable you to achieve a huge variety of
 effects in interactive stories. We'll use one to block
 the player's opening the plaster chicken when
 Bronson Alcatt is feeling hungry.
 2. In the list of folders that appears on the left side
 of the Adrift Developer screen, click on “Variables.”
 You should now see a list for variables beside the
 “Events” list on your screen.
 3. Right-click on a blank area in the new “Variables”
 list, and choose “Add Variable.”
 4. In the box that opens, indicate that your variable

 105

 will be called “grumpy, that it will be a number, and
 that its initial value will be 0 (zero).

Create a task that uses a variable.
 1. In the “Add Items” group, click on “Task.” Name
 the new task, “Open Chicken.”
 2. Indicate that your new task will be of the specific
 type. Using the dropdown menus, indicate that your
 new task should override “Open Objects.” Click on
 the word “object,” which appears in blue, and
 choose “a plaster chicken.”
 3. As a “message upon completion, type in
 something like “You open the plaster chicken,
 revealing a key inside.”
 4. Uncheck the box beside “Task is repeatable.”
 5. Click on the “Restrictions” tab and add a
 restriction, using the dropdown menus. This first
 restriction should read, “Character 'Player' must be
 in same location as object 'a plaster chicken'”

 106

 6. Now we'll make a restriction that uses our new
 variable. With the “Restrictions” tab open, click on
 “Add.”
 7. Click on the “variable” tab. Then, using the
 dropdown menus, create a restriction that reads,
 “Variable 'grumpy' must be equal to 1”
 8. In the box labeled “This restriction must be
 passed. Otherwise the following will be displayed,”
 type “Bronson tries to scratch you when you reach
 toward the chicken. Maybe he's grumpy because
 he's hungry.”
 9. Click on “OK” and “Apply.”
 10. Click on the “Action” tab, click on the “Set
 Properties” tab. Use the dropdown menus to create
 an action that reads, “Set Property 'Open status' of
 object 'a plaster chicken' to Open”

Review the status of your variable
 1. Since the use of variables can be a bit confusing,
 let's review the current state of
 the variable that we've created.
 2. The purpose of our variable is to make Bronson
 Alcott prevent the player/character from opening the
 plaster chicken, as long as Bronson is hungry.
 Once the player/character feeds Bronson the cat
 treat, the chicken should be available for opening.
 3. Our variable is called “grumpy,” and it's
 numerical; that is, it represents a number.
 At the start of the story, this number is zero.

 107

 4. We have created a task called “Open Chicken,”
 which prevents the opening of the plaster chicken
 unless the value of our “grumpy” variable is one.
 5. So far, we have not implemented any way in
 which the value of the “grumpy” variable can
 change to one. Therefore, as our story now works,
 the player/character will never be able to open the
 plaster chicken.
 6. What we need now is a new task that will include
 a change in the value of “grumpy.” This new task
 should involve feeding Bronson.

Create a task that changes the value of a variable.
 1. In the “Add Items” group, click in “Task.”
 2. Give your new task a name like “Give Treat,” and
 make it a specific task.
 3. Un-check the box labeled “Task is repeatable.”
 4. Using the dropdown menus, indicate that the task
 should override input of the pattern “give
 object to character.” Click on the blue-colored word
 “object” and choose “a pet treat.” Then
 click on the blue word “Character” and choose
 “Bronson Alcatt.”
 5. In the box labeled “Message to display on
 completion,” type something like, “Bronson
 accepts the treat and gobbles it up. He looks less
 grumpy now.”
 6. Click on the “Restrictions” tab and create the
 following restrictions:

 108

 1. The 'Player's Location' must be location
 location 'South Yard'
 In the box labeled, “The restriction above must
 be passed. Otherwise the following will be
 displayed,” type, “Bronson doesn't seem to be
 here.”
 2. Object 'a pet treat' must be held by character
 'Player'
 In the box labeled, “The restriction above must
 be passed. Otherwise the following will be
 displayed,” type, “You don't have the pet treat.”
 7. Click on the “Actions” tab and then on “Add.”
 8. Click on the “Variables” tab. Using the dropdown
 menus, choose “Set” and “grumpy.”
 9. If you're looking carefully, you'll see a small
 symbol that looks like this: 123. Click on that
 symbol. In the box that opens, type the numeral 1.
 10. Click on “OK.” As you've probably already
 realized, you have created an action that
 changes the value of the variable. On the list of
 actions, this action should come first.
 11. Create another action. After clicking on “Add”
 use the “Move Objects” tab.
 The finished version of this action should read,
 “Move object 'a pet treat' to held by character
 'Bronson Alcatt'
 12. Save your changes and try out your story.

 109

A challenge to try on your own
 1. Implement the door, as mentioned in the
 transcript.
 2. The Adrift Manual Wiki (http://wiki.adrift.co)
 explains how to create a fully-featured door,
 but you could get away with something much
 simpler in this story.

Another challenge
 1. Create a new specific task, overriding Adrift's
 usual response to “Examine Bronson Alcatt.”
 2. This task should produce two different
 descriptions of Bronson, one which appears before
 he gets his treat and one which appears after.

 110

Chapter 7 -- Creating Interactive Fiction with Quest on
the Web

Quest offers a way to create interactive stories with
very little programming. Like Adrift, Quest works mainly
though a series of windows and drop-down menus.
Originally, Quest was, like Adrift, a Windows-only
application, and, as of February 2015, its Windows
version remains its most complete variation. However,
Quest comes in a Web version, too, and we'll use the
Web variation for this tutorial, since it's more widely
available. However, if you have a Windows computer,
you should use the Windows version of Quest. It's more
mature, less buggy, and more complete, but it works
very much like what you'll see in this tutorial. In our
Quest tutorial, we'll implement the super-simple story
“Lost Chicken,” which we also used in our chapter on
writing IF with Adrift. Here's a transcript of the story:

“Lost Chicken” Script

You've made it to your home, as usual,

 111

but it seems that you've forgotten your

key.

Lost Chicken

An Interactive Fiction by Brendan

Desilets

Outside Front Door

You're outside your front door. The door

is to the west, and your front yard is to

the south.

You can see a doormat and an oak door

here.

>i

You are carrying:

 a pet treat

>take doormat

You find a note under the doormat and

pick it up.

>read note

The note reads, "The chicken hides the

spare."

>s

 112

South Yard

This is the lovely south yard of your

home.

You can see Bronson Alcatt and a plaster

chicken (closed) here.

>look at Bronson

Your very old cat, always a formidable

presence. He looks particularly grumpy

right now, as he rubs against his

favorite lawn ornament, a plaster

chicken.

>open chicken

Your irascible cat scratches you,

preventing you from getting at the

chicken.

>give treat to Bronson

Bronson gobbles up the treat. He looks

less grumpy now.

>open chicken

You open the plaster chicken, revealing a

key.

>take key

Taken.

 113

>n

Outside Front Door

You're outside your front door. The door

is to the west, and your front yard is to

the south.

You can see a doormat and an oak door

here.

>w

You unlock the door and enter your house.

Front Hall

You have made it inside, where Bronson

happily joins you.

 *** The End ***

A Tutorial for Quest on the Web

 Quest may require a slightly steeper learning curve
than Adrift, but Quest offers significant support for
educators at its website,
http://textadventures.co.uk/quest. In order to create a
story with the Web version of Quest, you first have to
set up an account at the Quest website.

http://textadventures.co.uk/quest

 114

Set Up Your Story

1. Log in to your Quest account and click on the
“Create” button at the top of your screen.

2. Click on “Create a New Game.”
3. In the “Game name:” box, type in the title of your

story. Your “Game Type” is “Text Adventure.”
4. Click on “Create.”
5. Click on “Start editing!”
6. Wait around for a minute or two. Like many Web

applications, Quest can be a bit slow to execute.
7. Quest will open with a screen that looks like this:

 115

8. Notice that the word “game” is highlighted on the

diagram that appears on the left side of the screen.
That diagram is important, and we'll have to monitor
it carefully as we go along.

9. Fill in the information that's asked for on the “Setup”
tab. Feel free to examine and even experiment with
the other tabs if you wish, with the exception of the
“Player” tab. It's best to leave that one as it is, in
order to head off possible buggy behavior.

Enhance Your First Room

1. You may have noticed, in the chart on the left of
the screen, that Quest has already created a
room for you and placed the player/character in
that room.

2. Click on the word “room” in the chart at the left.
Do not click on the button labeled “+ Room” at
the top of the screen. We'll use that one later.

3. A screen that looks like this will open:

 116

4. In the screen that opens, fill in the name of the
opening room, in our case “Outside Front Door.”

5. As an “alias,” use something like “outside your
front door, which lies to the west.”

6. Click on the “Room” tab and fill in a description,
such as “This is a grassy area outside your front
door, which lies to the west.”

7. We'll use the other tabs later. For now, click on
the “Save” icon at the upper right corner of the
screen, unless Quest has already greyed it out,
indicating that the story is already saved.

8. In addition to saving your story, you'll want to
download it occasionally as your project gets
larger. Downloaded versions of you story are
excellent insurance, in case something goes
wrong with your on-line copy.

9. The downloaded stories will require the full
Quest program, a Windows-only tool, for editing
them. However, in the case of a complex story,
most users will be better off with the Windows
program anyway, as it's faster, more complete,
and more reliable.

Add Two More Rooms

1. Click on the word “game” in the chart at the left

 117

of the screen. Make sure that the word “game is
highlighted, as we want our additional rooms to
be inside the game, but not inside anything
else.

2. Click on the “+ Room” button at the top of the
screen.

3. You'll see a familiar room-edition screen. Fill in
the “Name” as “South Yard” and the “Alias” as
something like “a lovely yard, south of your
home.”

4. Click on the “Room” tab and fill in the
description text, “This is the lovely South Yard of
your home.”

5. Click on the “Exits” tab. Since we want the
player to go north from here to Outside Front
Door, click on the circle beside the word “North.”
When you've done so, you'll see a dropdown
menu labeled “Create an exit to:” Use this
dropdown menu to select “Outside Front Door.”

6. We want this exit to work in both directions, so
check the box that is labeled “Also create exit in
other direction.”

7. Once again, click on the word “game” in the
chart that appears at the left of the screen. Click
on the “+ Room” button at the top of the screen.

8. This time, we'll name the room “Front Hall,” and
we'll give it the alias “cozy front hall of your
home.”

9. We'll not use the “default prefix” for this room.

 118

Instead we'll use the prefix “the.”
10. We won't use the “Room” tab here, but we

will click on the “Exits” tab.
11. With the “Exits” tab open, create a two-way

exit that leads east to “Outside Front Door.”
Later, we'll create a restriction on when the
player can go west from Outside Front Door to
Front Hall.

Try Out Your Story, So Far

1. Click on the “Save” button in the upper right part
of the screen, unless the button is already
greyed out.

2. Click on the “Play” button at the top of the
screen. After a few seconds, you should see
you story running, with the player in the room
called “Outside Front Door.”

3. You should be able to move around through the
three rooms you've created.

4. Occasionally, the Quest interpreter seems to
generate odd error messages, in response to
common IF commands. Often, simply trying
your command a second time will solve the
problem.

Create Two Objects, the Doormat and the Note

 119

1. New writers of interactive fiction often ask about

how a writer can cause a concealed object to
appear, the way the note appears in “Lost
Chicken,” when the player/character takes the
doormat. Here's one of the several possible
ways to get this effect.

2. First, let's create the note.
3. Click on “Outside Front Door” on the chart that

appears at the left of your screen. You will see
the familiar screen which you used to provide
information about the “Outside Front Door”
room.

4. On this screen, click on the “Objects” tab. A
screen will open, showing that one object, the
player, is already in “Outside Front Door.”

5. In the “Objects” tab, click on “Add.” A screen will
open, allowing you to provide information about
your new object.

6. Give your new object the name “note.” Make its
description, “The note reads, 'The chicken hides
the spare.'"

7. Click on the “Inventory” tab, and indicate that
the new object can be taken.

8. Make sure that the box beside “Visible” is not
checked. The note, in its initial form, will not be
visible to the player, but we'll make it visible
soon.

 120

9. Once again, click on “Outside Front Door” on
the chart at the left of the screen. Then click on
the “Objects” tab.

10. Click on Add.
11. This time, call your object “mat,” and make

its alias “doormat.” Its description should be
something like “an ordinary doormat.”

12. Click on the “Object” tab and then click on
the “+ Add” button that appears beside “Other
Names.” Add the new name “mat.”

13. Click on the “Inventory” tab and indicate that
the mat can be taken.

14. Click on the “Save” button if it's not already
greyed out.

 121

Create Your First Script

1. Some Background Concepts
1. Scripts are central to Quest, in pretty much the

same way that tasks are central to Adrift. In Inform
7, which we’ll consider later in this book, rules
serve more or less the same purpose as scripts.

2. Scripts can be quite complex, but they are
essential.

3. Scripts allow an author to change the default
behavior of the game world. For example, in our
“Lost Chicken” story, we can change what
happens when the player/character takes the mat,
causing the note to appear.

4. As we build a script, it we will often add other
scripts to it. Thus, it is extremely common for an
author to start creating a script and then to add
other scripts to it.

2. Our First Script – the Goal
1. In order to make the note appear when we want it

to, we'll build a script. These are the
characteristics of that script.
1. It takes place only after the player/character

takes the mat when the note has not yet been
revealed. We don't want the note to
mysteriously reappear every time the
player/character drops mat and picks it up
again.

 122

2. It causes the note to appear.
3. It tells the reader what the previous elements of

the script caused to happen.
2. We'll build our script, using the “Inventory” tab for

the object called “mat.”
3. Our First Script – the Building Process

1. On the chart that appears at the left of your
screen, click on “mat.”

2. Click on the “Inventory” tab.
3. Under “After taking the object,” click on the button

labeled “+ Add new script.” A popup window that
looks very much like this will open:

 123

4. Click on the word “If,” which is in the upper right
part of the popup window.

5. The word “IF” will appear, followed by a series of
dropdown menus.

6. Using the dropdown menus, create an “if” clause
that reads, “IF: object is not visible object note.”

7. By now, you've probably noticed that the screen
you're looking at has become pretty complicated.
For one thing, it contains at least three identically-
labeled buttons that read “+ Add new script.”

8. One of these “+ Add new script” buttons is directly
under “If: object is not visible object note.” And
this particular button is indented a bit.

9. The indenting is intended to show that whatever
command (AKA “script”) you add using the
indented button will be carried out only if the note
is not visible.

10. This sort of indenting is of paramount
importance in creating good scripts. Such scripts
often require nesting groups of commands within
other groups of commands, and the indenting is
very helpful in keeping all the nests sorted out.

11. Click on the indented button that's labeled “+
Add new script.” A popup window will open.”

12. The defaults that are already selected in the
popup window will probably indicate that you want
to print a message. As a matter of fact, that's a
good idea here, so just click on “OK.” If the
defaults do not have “Print” and “Print a message”

 124

already selected, select them before you click
“OK.”

13. Indicate that the message you want to print is
something like “Moving the doormat reveals a
note.”

14. Notice that there's now a “+ Add new script”
button directly under the word “Print.” Click on
that “+ Add new script” button.

15. This time, on the popup window, select the
“Objects” button and choose “Make object visible.”
Click on “OK.”

16. Now using the dropdown menus, assemble this
command, “Make visible object note.”

17. Your screen should now look like this:

 125

18. Click on “Save” if it's not already greyed out.
Then try out your story so far, using the “Play”
button.

Create Your First Container

 1. IF authoring systems usually have some
 built-in object types. One of these is the
 container, a type of object that can hold other
 objects. In “Lost Chicken,” the plaster
 chicken is a container that has a key in it.

2. To create the plaster chicken, begin by clicking
on “South Yard” in the chart on the left side of
the screen. Then click on the “Objects” tab.

3. Click on “+ Add.”
4. A familiar screen for creating an object will

 126

appear, with the “Setup” tab selected. Fill in the
name “chicken” and the alias “plaster chicken.”
For a description, type something like “An old
plaster chicken, used as a container.”

5. With the “Object” tab depressed, add “chicken”
as an “other name.”

6. Click on the “Inventory” tab. Make sure that
“Object can be taken” is not checked.

7. Click on the “Features” tab and select
“Container: object is a container or surface, or
can be opened and closed.”

8. A new tab, labeled “Container,” will appear.
Click on this tab, and chose, as the “Container
type,” “Openable/Closable.” Then, check “Can
be opened,” and “Can be closed.”

9. Click on the “Objects” tab and then on “+ Add.”
Add the object “key,” and fill in its details in our
now-familiar fashion.

10. Try out your story. It should be possible for
the player/character to go south to the South
Garden, open the plaster chicken, and take the
key.

Create a Script That Ends Your Story

1. Our story ends when the player/character gains
entry to the Front Hall. It should be impossible
for the player/character to get to the Front Hall
unless he or she is carrying the key.

 127

2. We'll use a script to implement this behavior.
3. In the chart at the left of the screen, locate

“Outside Front Door,” but don't click on it.
4. Under “Outside Front Door,” locate “Exit: Front

Hall,” and click on it.
5. Put a checkmark beside “Run a script (instead

of moving the player automatically).”
6. As we did on our previous script, start by

choosing “If'” from the upper right part of the
popup menu, and then build a statement, using
the dropdown menus that will appear. The
statement should be, “If player is not carrying
object object key.”

7. Once again, you'll see a fairly complex screen
with a number of buttons labeled “+ Add new
script.” Pick out the “+ Add new script” button
that is indented under your “If” clause, and click
on that button.

8. Again, a popup window will open, and, as it
happens, the default behavior, printing a
message, is what we want. Click on “OK,” and
fill in the message, “You can't get through the
door without the key.”

9. Now, we'll add some unfamiliar features to our
script. First, click on the “+ Add Else” button,
which appears below your “If” clause.

10. Identify the “+ Add new script” button that is
immediately under the word “Else” and slightly
indented. Click on that button.

 128

11. A familiar popup window will open. Click on
“Move” at the top of the window.

12. Using dropdown menus, build the command
“Move object object player to object “Front Hall.”

13. Identify the “+Add new script” button that
appears immediately under the command that
you just created. Click on that button.

14. Click on “OK.” Then fill in the “Print” box that
appears with a message like, “Congratulations!
You've finished the story.

15. Press the “+Add new script” button that
appears below your “Print” statement. A familiar
popup window will open.

16. Click on the “Game State” button that
appears along the left side of the popup
window. Then choose “Finish the game” and
click on OK.

17. Save your story and try it out. You should be
able to reach the end of the story.

Create Your First Non-Player Character

1. The only non-player character in our story is cat
named Bronson Alcatt. He starts out in the
South Yard, so let's start out by clicking on
“South Yard” on the chart at the left of the Quest
screen.

2. Click on the “Objects” tab and then on the
button labeled “+ Add.” Let's call our new object

 129

“Bronson Alcatt” and use “Bronson Alcatt” as his
alias. Bronson's “Type” will be “Male character
(named).”

3. As a “Look at” description, let's choose “Text”
from the dropdown menu and type something
like, “Your ancient and formidable feline.”

4. Using the “Object” tab, let's add some names
for the cat. These might be “Bronson,” “Alcatt,”
and “cat.”

5. Save you progress, unless Quest has already
saved it for you. Try out your story once more.

Create the Pet Treat

1. Quest considers the pet treat to be a bit
different from the other objects we have created
because we want to be able to give it to
Bronson.

2. Click on the word “player” on the chart at the left
of the screen. Then click on the “Objects” tab.

3. Click on “+ Add,” and give your new object the
name “pet treat.” Using the dropdown menu,
indicate that the “Parent” of the pet treat is the
player, not the room in which the player starts
out.

4. Give the “pet treat” the alias “treat.”
5. Click on the “Object” tab and add the name “pet

treat.”
6. Click on the “Features” tab and check the box

 130

beside “Use/Give: object can be used on its
own or with other objects/characters or given to
other objects characters.” You'll notice that a
new tab, labeled “Use/Give” will now appear.

7. Focus on the section of the screen labeled
“Give this to (other object).” Beside the word
“Action,” you'll see a dropdown menu. From this
menu, choose “Handle object individually.”

8. Click on “+ Add” and choose “Bronson Alcatt.”
Note that, slightly indented under “Bronson
Alcatt,” there is a familiar “+ Add new script”
button.

9. We are now going to build a script will
accomplish two goals.
1. It will tell the reader what happens when the

player/character gives the treat to Bronson.
2. It will actually transfer the treat from the

player/character to Bronson.

 131

10. Click on the “+ Add New Script” button that
appears, slightly indented, under “Bronson
Alcatt.”

11. In the popup menu that opens, you'll notice
that printing a message is already selected. As
a result, simply click on “OK” at the bottom of
the popup.

12. In the “Print message” box, type something
like “Bronson accepts the treat and devours it
greedily. He looks less grumpy now.”

 132

13. Locate the “+ Add new script” button that
appears directly below the word “Print.” Click on
that button.

14. In the popup window that opens, click on
“Move,” which appears on the top row of
options. The popup will disappear, and you'll
find that you're back on the previous page.
However, you'll note that a new line has been
added under your “Print” box. This line offers a
series of dropdown menus.

15. Using this new line and its dropdown
menus, create the command, “Move object pet
treat to object Bronson Alcatt.”

16. Save your work and try out your story.

Implement Bronson's Gumpy Behavior

1. We've now made it possible for the
player/character to give the pet treat to
Bronson, but we have not yet provided any
motivation for doing so. We now need to create
a way to implement Bronson's mood and to
change it once he gets the treat.

2. In the various IF authoring systems, the most
obvious way to implement this sort of change is
to use a variable. If we were working with the
Windows version of Quest, we would use a
similar approach, but the Web version of Quest
does not give us this option.

 133

3. Instead, we'll implement Bronson's mood by
keeping track of whether or not he has the pet
treat.

4. Click on the word “chicken” in the chart that
appears on the left of the screen. Click on the
“Container” tab.

5. Under “Script to run when opening object,” click
on the button labeled “+ Add new script.”

6. Using the dropdown menus, construct the
following, not too grammatical, clause:

If: object does not contains Parent: object
Bronson Alcatt Does not contain: Child object
pet treat.

7. The meaning of your odd-sounding “if” clause
is, “If Bronson Alcott is not carrying the pet
treat.”
1. Note that, when the player/character gives

Bronson the pet treat, the reader is told that
Bronson ate it.

2. However, we never actually implemented
anything that would make the pet treat go
away.

3. We did implement the transfer of the pet treat
to Bronson.

4. By default, when the player/character looks
at another character, the player/character
does not see what the other character is

 134

carrying. For this reason, the reader has no
way of knowing that Bronson is actually
carrying the treat.

8. Locate the button labeled “+ Add new script,”
the one that is slightly indented under the “if”
clause you just created.

9. On the popup window that opens, click on
“Print” in the top left part of the popup. Then
click on “OK.”

10. Fill in the resulting print box with something
like, “When you reach toward the chicken,
Bronson tries to scratch you, preventing you
from opening it. Perhaps he's grumpy because
he's hungry.”

11. Click on “Add Else.”
12. Identify the “+ Add new script” button that

appears below “Else:” and slightly indented.
Click on that button.

13. In the popup window that opens, click on
“Print.” Fill in the print box with something like,
“You open the plaster chicken.”

14. Locate the “+ Add new script” button that
appears directly below the word “Print.” Click on
that button.

15. In the popup window that opens, click on
the word “Objects,” which appears on the left
side of the popup. Then select “Open object”
and click on “OK.”

 135

16. Then using the dropdown menus that
appear, construct the command, “Open object
object chicken.”

17. Save your story and try it out.

Some Further Challenges

1. Try to make Bronson's description more flexible,
using a script rather than plain text.

2. Implement the front door. There's a way to do
this sort of implementation in the Quest
documentation at
http://docs.textadventures.co.uk/quest/tutorial/u
sing_lockable_exits.html. However, you
probably don't need a fully-implemented door
for our story.

http://docs.textadventures.co.uk/quest/tutorial/using_lockable_exits.html
http://docs.textadventures.co.uk/quest/tutorial/using_lockable_exits.html

 136

Chapter 8: Inform 7 and the Writing Process

 Can students improve their writing and thinking by
programming computers? In his seminal book
Mindstorms: Children, Computers, and Powerful Ideas
(1980), Seymour Papert argues that, within a computer-
rich environment, or “microworld,” students can
construct knowledge in uniquely exciting ways, largely
through the use of the user-friendly programming
language called Logo. Taking their cue from Papert,
teachers of writing have developed ways to apply Logo
to the writing process, even in conventional instructional
settings that do not offer a great deal of computer
access. In one instance, teachers have used the
recursive power of Logo to help students develop their
ideas through extended definition.

 Still, Logo has its obvious drawbacks as a tool for
teaching writing. To begin with, Logo programs, or
“source text,” don't have much in common with actual
essays and stories. For example, two Logo programs,
or “procedures,” which can be used in teaching students
to develop essays through extended definition, look like
this:

TO SQUARE :SIZE

 FD :SIZE

 RT 90

 FD :SIZE

 137

 RT 90

 FD :SIZE

 RT 90

 FD :SIZE

 RT 90

 END

TO GROWSQUARES :SIZE

 SQUARE :SIZE

 RT 20

 GROWSQUARES :SIZE + 5

 END

Beyond Logo: What Would Writing Teachers Want?

 This Logo code is easy enough to teach, and it
includes some “powerful ideas,” such as the use of a
variable (:SIZE) and the odd notion of recursion,
through which the procedure called “GROWSQUARES”
starts increasingly large iterations of itself
(GROWSQUARES :SIZE +5). However, if we want to
instruct students the writing process without having to
teach for transfer in a very vigorous, time-consuming
way, we would be better off with a programming
language whose code looks more like an essay. In

 138

addition, Logo code generally does not produce output
that looks like an essay or narrative. In the example
we've reproduced above, the output is an ever-
increasing spiral drawn on the computer screen—an
admirable way to show what recursion is, but a long
way from a written text. For teaching purposes, most of
us would prefer a programming language that can
produce an interesting prose output.

 Is there a programming language that uses essay-
like source code to produce useful prose output? Yes,
but it hasn't been around for long, only since 2006. The
language is called Inform 7, and it's used to create
interactive fiction. Inform 7 (http://inform7.com) is free of
charge and runs on Windows, Macintosh, and Linux
computers. There's a truncated, but very useful Web
version called Playfic (http://playfic.com)

Interactive Fiction

 Here is a transcript of a session with “A Narrative
About Virtue,” a work of interactive fiction (AKA, an
interactive fiction). This story includes a bit of
conversation with a character, and so it is not quite so
simple as “Lost Chicken,” which we used in the previous
chapter. This new example story will prove useful when
we look at the sort of writing students might do with
Inform. The reader's input, which would vary greatly
from session to session, appears in boldface type.

 139

It's another typical day in College

Writing II. The professor is

illustrating the use of thesis

statements, using a whiteboard, when she

drops her marker on the floor. She

appears to be a little hesitant to bend

down and pick it up.

A Narrative About Virtue

An Interactive Fiction by Brendan

Desilets

Release 1 / Serial number 101106 / Inform

7 build 6E72 (I6/v6.31 lib 6/12N)

Coburn 301

A typical college classroom, with lots of

desks, a whiteboard, and a dozen or so

students.

You can see the professor, a marker, and

Matt here.

>Look at the desks.

Ordinary desk-chair furniture.

>Look at the whiteboard.

An ordinary whiteboard, which the

professor has been using in her

presentation.

 140

>Look at the professor.

A smart and kindly lady, but elderly and

not too spry.

>Pick up the marker.

As you pick up the marker, you notice

that there's a Zune MP3 player on the

floor, under your chair. The Zune isn't

yours, though you wish it were. In fact,

you recognize the Zune as the property of

Matt, who's slouched beside you.

>Take the Zune.

Taken.

>Give the marker to the professor.

The professor thanks you with notable

sincerity. You have demonstrated the

virtue of thoughtfulness.

[Your score has just gone up by five

points.]

>Look at the professor.

A smart and kindly lady, but elderly and

not too spry. The professor looks

pleased with you.

 141

>Give the Zune to Matt.

Matt nods. He looks a little surprised at

getting his toy back so easily. You have

demonstrated the virtue of honesty.

The professor turns to you and asks,

"Now, Jamie, can you tell us who wrote

Plato's Republic?" Unfortunately, you've

never heard of this work.

The professor says, "Jamie, I know you

can figure this one out. Who wrote

Plato's Republic?"

[Your score has just gone up by five

points.]

>Look at Matt.

A sincere, if slightly lethargic young

man, wearing a UMass Lowell sweatshirt.

Matt looks quite happy right now.

The professor says, "Jamie, I know you

can figure this one out. Who wrote

Plato's Republic?"

>Say Aristotle to the professor.

The professor says, "No. That's not it."

 142

The professor says, "Jamie, I know you

can figure this one out. Who wrote

Plato's Republic?"

>Say Plato to the professor.

The professor expresses appreciation of

your insightful response. You have

demonstrated the virtue of intelligence.

 *** You have won ***

You scored 15 out of a possible 15, in 13

turns.

 (An interactive version of this very brief story is
available on the Web, at http://tinyurl.com/virtueif Some
examples of real, fully developed interactive fiction are
at http://pr-if.org/play/.)

Inform 7

 How does Inform 7 enable a writer to produce an
interactive story? Like all IF authoring systems, Inform 7
provides a parser that can accept a reader's input. In

http://tinyurl.com/virtueif
http://pr-if.org/play/

 143

addition, Inform offers ways for the author to manipulate
the parser for the purposes of a particular story. Further,
Inform offers a model world that the writer can use,
altering it as he or she will. This model world includes
locations (called “rooms”), doors, items that can or can't
be carried, containers, locks and keys, and characters.
The great innovation that Inform 7 offers to IF authors is
the ability to implement all of the above, while staying,
pretty much, within the parameters of readable English
prose, with typical sentences, punctuation, and
paragraphs.

 In earlier chapters, we looked at two authoring
systems that use menus and forms to produce
interactive stories. But Inform, TADS, and most other IF-
making systems work differently. Using these systems,
when an author produces a work of interactive fiction,
he or she writes “source code,” a set of instructions for
the computer to use in presenting the story to a reader.
The writer then tells the authoring system to transform
the source code into a form that a computer can
understand. This transformation is called “compiling.”
The Inform 7 source code for an interactive story takes
the form of a recognizable essay developed through
process analysis. Using English sentences, the source
code tells the computer, step by step, how to present
the story to the reader.

 The process of compiling source text offers some

 144

useful opportunities for the teaching of writing. In order
to compile source code, the Inform system has to check
the code for a variety of features, including spelling,
punctuation, vocabulary, transitions, and completeness.
In other words, the compiler checks for textual features
that relate directly to what writing teachers call clarity,
coherence, and development. If the source code fails to
live up to the compiler's expectations, Inform 7 will fail to
produce a work of interactive fiction, issuing an error
message. Inform 7's compiler acts somewhat like a
very strict teacher of writing.

A Look at Inform 7 Code

 Let's have a look at some source code, to see how
these ideas work out in practice. Once we have set up
an Inform 7 project, by specifying its title and author, the
system offers us a nearly blank pane in which to place
our code. The pane looks like this:

"A Narrative About Virtue" by Brendan

Desilets

In this pane, let's create our first room, using English
sentences.

"A Narrative About Virtue" by Brendan Desilets

Coburn 301 is a room. The description

 145

of Coburn 301 is "A typical college

classroom, with lots of desks, a

whiteboard, and a dozen or so students."

 At this point, if we tell Inform to compile our code,
Inform will do so, placing our player/character of the
story in a room called “Coburn 301” and described as “A
typical college classroom, with lots of desks, a
whiteboard, and a dozen or so students.” The reader
won't be able to do much of anything yet, but the story
will, at least, start. Suppose, though, that we misspell
“description.” In this case the compiler will refuse the
create a story, complaining as follows:

Problem. You wrote 'The desciption of

Coburn 301 is "A typical college

classroom, with [...] board, and a dozen

or so students."' but this seems to say

that a thing is a value, like saying 'the

chair is 10'.

The compiler thus has a role in enforcing clarity by
insisting, up to a point, on correct spelling. Similarly, it
will insist on a controlled vocabulary (“room”) and
completed punctuation, such as the closing quotation
marks. What's within the quotation marks, on the other
hand, is, for the most part, none of Inform's business.
The compiler will not complain if a student misspells
“whiteboard,” for example.

 146

 Next, let's create the character of the professor.
Here's some code that will get us started:

The professor is a woman. The

description of the professor is "A smart

and kindly lady, but elderly and not too

spry." The professor is in Coburn 301.

The indefinite article of the professor

is "the".

Here, some writing teachers will see an opportunity to
teach about articles. Since “the professor” is more
appropriate for our story than “a professor,” we add an
assertion that controls the article. Note that, in
specifying the article “the,” Inform does not follow the
usual English convention for the period and its
placement relative to closing quotation marks. If Inform
did not make this variation, “the professor” would come
out, in the story as “the. Professor.”

 There's also an opportunity for work with clarity and
development here, since student writers will often forget
to specify a character's location. In other words, they will
fail to use an assertion like “The professor is in Coburn
301.” If a student leaves out the professor's location,
the story will still compile, but the professor will not
appear anywhere. She will be “off-stage,” to use
Inform's terminology. Of course, we might, under some

 147

circumstances, want a character to be off stage at first,
so that we can bring her into the story later on.

 Now, let's create, or “implement” the marker and the
Zune.

The marker is a thing in Coburn 301. The

description of the marker is "An ordinary

black dry-erase marker."

The Zune is a thing. The description of

the Zune is "A slick new music player."

Understand "ipod" and "mp3 player" as the

Zune.

Inform's assumptions about these objects, since we
haven't specified otherwise, is that they are small
enough to pick up and carry around, though we can
easily override these assumptions when we want to.
Notice that the Zune is initially off-stage, since we don't
want the player/character to see it until she picks up the
marker for the professor. Note, also, an important
consideration for clarity and development in interactive
fiction: we have provided synonyms for the reader to
use in referring to the Zune. Readers of IF are famously
appreciative of such consideration.

 Now that we've implemented some objects, let's set
up our first rule for governing how the story is to be

 148

presented.

When play begins, say "It's another

typical day in College Writing II. The

professor is illustrating the use of

thesis statements, using a whiteboard,

when she drops her marker on the floor.

She appears to be a little hesitant to

bend down and pick it up."

This rule will take effect only once in the story, at the
very beginning. In Inform 7, “say” is an instruction to the
computer to display some text on the screen. This
particular rule causes only one action to happen, the
“saying” of some words. We'll soon see other rules that
cause a series of events to take place.

 An interactive fiction does not have to include a
“When play begins” rule, but nearly all IF stories do. The
inclusion of such a rule helps a student writer to see the
importance of a coherent beginning. We'll soon see a
rule for the story's ending.

 Next, let's implement a more complex rule to
describe what happens when the player/character gives
the marker to the professor.

Instead of giving the marker to the

professor:

 149

 say "The professor thanks you with

 notable sincerity. You have

 demonstrated the virtue of

 thoughtfulness.";

 move the marker to the professor;

 increase the score by 5.

This time, we're using an “instead” rule. Instead of
what? Instead of what the model world of Inform would
otherwise do. The Inform model world supports the
notion of giving something to someone. It understands
the verb “give” as a transitive verb that is typically
followed by an object and by a prepositional phrase
starting with “to.” However, since it has no way of
knowing what any given author wants to do with the
action of giving, the model world, as a default,
responds, to an attempt to give, with a plain-vanilla
piece of text, proclaiming that the intended recipient
“doesn't seem interested.”

 In our case, we want to make three assertions that
will take effect when the player/character gives the
marker to the professor. In order to signal that we want
more than one assertion to attach itself to this rule, we
use a colon, rather than a comma, after “Instead of
giving the marker to the professor.” Then we make our
three assertions, each indented to show that all three
are to follow from our “instead” rule. The first of our
three assertions prints some text to the screen. This text

 150

expresses the professor's gratitude, but it doesn't do
anything to move the marker. Like all assertions in a list
of this sort, our “say” assertion has to end in a
semicolon, odd as it may look. The second assertion
handles the actual transfer of the marker to the teacher,
and the third increases the player/character's score,
which we use, in this story, to mark the character's
demonstration of various virtues.

 Now, let's implement the player/character's picking
up the marker.

After taking the marker:

 say "As you pick up the marker, you

notice that there's a Zune MP3 player

on the floor, under your chair. The Zune

isn't yours, though you wish it were.

In fact, you recognize the Zune as the

property of Matt, who's slouched beside

you.";

 move the Zune to Coburn 301.

In its structure, this new rule looks a lot like the “instead”
rule that we created earlier. This time, however, the rule
does not substitute itself for Inform's default action.
Instead, the rule takes effect after the player/character
has taken the marker. Inform's default action of “taking”
transfers the marker to the player's possession
automatically. We don't need to create our own

 151

assertion for the transfer. The first assertion that we do
make prints some text to the screen. The second
assertion moves the Zune from off-stage to Coburn 301,
where the player/character can now interact with it.

 Some writing teachers, since they are not really
trying to build better programmers, might omit the idea
of the “after” rule altogether, since the same result can
be achieved with an “instead” rule, like the one that
follows.

Instead of taking the marker:

 say "As you pick up the marker, you

notice that there's a Zune

 MP3 player on the floor, under your

chair. The Zune isn't

 yours, though you wish it were. In

fact, you recognize the

 Zune as the property of Matt, who's

slouched beside you.";

 move the marker to the player;

 move the Zune to Coburn 301.

 Creating the character Matt is essentially the same
process as implementing the professor.

Matt is a man in Coburn 301. The

description of Matt is "A sincere, if

slightly lethargic young man, wearing a

 152

UMass Lowell sweatshirt."

 And the rule for giving the Zune to Matt is similar to
the rule for giving the marker to the professor.

Instead of giving the Zune to Matt:

 say "Matt nods. He looks a little

surprised at getting his toy

 back so easily. You have

demonstrated the virtue of honesty.";

 move the Zune to Matt;

 increase the score by 5.

 Now we need rules for a limited sort of conversation
with the professor. Inform's built-in conversation system
allows for asking, telling, consulting, and answering.
First, we'll create a rule for the professor's posing of her
question.

An every turn rule:

 if the score > 8:

 say "The professor turns to you and

 asks, 'Now, Jamie, can you tell us

 who wrote Plato's Republic?'

 Unfortunately, you've never heard

 of this work."

Here, we've implemented an “every turn” rule. Inform
will check, at the end of every turn, to see whether the

 153

conditions imposed by the rule have been met. In our
case, the only condition is that the player's score be
greater than eight. If the condition is met, the professor
will pose her question.

 Now, we need a way to implement the player's
answer. We'll use an “instead” rule to handle the correct
answer. Using this rule, we'll print some text to the
screen, increase the score to its maximum, and end the
story.

Instead of answering the professor that

"Plato":

 say "The professor expresses

appreciation of your insightful

response. You have demonstrated the

virtue of intelligence.";

 increase the score by 5;

 end the story saying “Congratulations!

You have proven to be virtuous.”

 To handle incorrect answers, we'll create a similar
rule that is deliberately more general than the rule for
the correct answer. Inform applies a more general rule
only if a more specific rule does not already apply.

Instead of answering the professor that

something:

 say "The professor says, 'No. That's

 154

not it.'"

 Our source code has now reached the point at
which, when compiled, it produces a readable story,
though not quite the story that our transcript shows. In
addition, with some appropriate explanatory text, our
source code would constitute an essay developed by
process analysis. Still, there's one more powerful idea
that we will need in order to produce the tale that our
transcript tells. We need a variable. Inform allows for
various sorts of variable, but let's start with a
straightforward adjective.

A person can be pleased. A person is

usually not pleased.

Here, we have created the adjective variable “pleased.”
We've restricted this adjective to people, and we're
provided a default value for it, “not pleased.”

 What can we do with this variable to shape our
story? Almost anything we want. For example, if Matt is
“not pleased” when the player/character has held his
Zune for a certain number of turns, he might attack the
player/character. On the other hand, if he is pleased, he
might offer the player/character a reward for returning
the MP3 player. In our transcript, though, we make
somewhat subtler changes based on our variable—we
change the characters' descriptions when they become

 155

pleased, by changing the source code for their
descriptions as follows. Note the use of brackets to
create conditions under which new text will be
displayed.

The professor is a woman. The

description of the professor is "A smart

and kindly lady, but elderly and not too

spry. [if the professor is pleased] The

professor looks pleased with you[end

if]." The professor is in Coburn 301.

The indefinite article of the professor

is "the".

Matt is a man in Coburn 301. The

description of Matt is "A sincere, if

slightly lethargic young man, wearing a

UMass Lowell sweatshirt. [if Matt is

pleased] Matt looks quite happy right

now[end if]."

 As our code stands now, however, neither Matt nor
the professor will ever become pleased. We'll have to
change our rules for giving them their objects to include
a change in pleased-ness. Our assertion for making this
change reads “now the professor (or Matt) is pleased.”

Instead of giving the marker to the

professor:

 156

 say "The professor thanks you with

 notable sincerity. You have

 demonstrated the virtue of

 thoughtfulness.";

 move the marker to the professor;

 now the professor is pleased;

 increase the score by 5.

Instead of giving the Zune to Matt:

 say "Matt nods. He looks a little

 surprised at getting his toy back so

 easily. You have demonstrated the

 virtue of honesty.";

 move the Zune to Matt;

 now Matt is pleased;

 increase the score by 5.

 Let's add one more tool to our programming
repertoire, a numerical variable. We may decide not to
use this tool in connection with the teaching of writing,
but it does become useful when students try to produce
more complex stories. In our example, we'll make a
numerical variable to help us vary what the professor
says when she asks her Republic question.

The professor has a number called

questioning. The questioning of the

professor is 0.

 157

 Next, we create an "every turn" rule. At the end of
every turn, Inform will check to see if it should carry out
this rule. We'll use our numerical variable to vary what
the professor says.

 The first time the professor asks her question, the
value of the numerical variable will be zero, its default.
However, after she asks, we'll increase the value of the
variable to one.

Note, also, the use of single quotation marks within the
double quotation marks. For the player, Inform will
display the single quotation marks as double quotes.
We've added some italics here, too.

An every turn rule:

 if the score > 8:

 if the questioning of the professor

 is 0:

 say "The professor turns to you

 and asks, 'Now, Jamie, can you

 tell us who wrote Plato's

 [italic type]Republic[roman

 type]?' Unfortunately, you've

 never heard of this work.";

 increase the questioning of the

 professor by 1;

 if the questioning of the professor

 is greater than 0:

 158

 say "The professor says, 'Jamie,

 I know you can figure this one

 out. Who wrote Plato's [italic

 type]Republic[roman type]?'"

 We've implemented nearly all of our story, as it
appears in the transcript. All that's left to add are some
objects and people that aren't important to the story's
interaction. These include the whiteboard, the student
desks, and most of the students. We implement these
elements largely to achieve a sense of completion in our
interactive world. If we did not implement these objects
and the player tried to examine them, the response
would be a nonsensical “You can't see any such thing.”
By declaring that our new items are “scenery,” we
prevent the player/character from taking them. Also,
we'll use the Inform concept of “understanding” to
implement some synonyms to help the reader along.

The whiteboard is scenery in Coburn 301.

The description of the whiteboard is "An

ordinary whiteboard, which the professor

has been using in her presentation."

Some desks are scenery in Coburn 301. The

description of the desks is "Ordinary

desk-chair furniture." Understand "desk"

and "chair" as the desks.

 159

Some students are scenery in Coburn 301.

The description of the students is

"Ordinary collegiate scholars."

 Finally, we'll establish two useful controls on the
way the story will work. One of these controls declares
the maximum score the player can achieve. The other
tells Inform to punctuate series in the American style.

The maximum score is 15.

Use the serial comma.

A Process-Analysis Essay

 Now the source code is complete, we can produce
an essay developed through process analysis. All we'll
have to do is add appropriate text to comment on the
source code. The finished essay might look something
like the following.

"A Narrative About Virtue" by Brendan Desilets

 [How can we write a computerized interactive story?
Using the authoring system called Inform 7, we can give
the computer plain-Englsh instructions about how to
present almost any story. Here, we'll develop some
“source text,” which will tell the computer, step by step,

 160

how to tell a simple interactive story. Obviously, we've
started with some text in brackets. Usually, text that
appears in brackets is not part of the instructions for the
computer. Instead, it is text intended for a human
reader.]

 [Our story is about a young woman in a college
class. In the course of the story, she'll have a chance to
display three traditional virtues, thoughtfulness, honesty,
and intelligence.]

 [First, we set the maximum score that the player
can achieve in this gamelike story. The score will help to
document virtues that the player/character displays.]

The maximum score is 15.

 [Next, we tell Inform to use a comma between the
last two items in a series. This use is typical in America,
but not in Inform's homeland, England.]

Use the serial comma.

 [Here we create our first noun, a room.]

Coburn 301 is a room. The description of

Coburn 301 is "A typical college

classroom, with lots of desks, a

whiteboard, and a dozen or so students."

 161

 [Here we create an adjective variable. Once we
make our variable, any person can be either pleased or
not pleased. The default, as we declare it, is "not
pleased."]

A person can be pleased. A person is

usually not pleased.

 [Here we create our first character, the professor.
Her description changes, depending on whether or not
she is pleased.

 Notice that we have overridden the article that
Inform would normally use in referring to the professor.
We changed the article from the default "a" to "the." In
this case, in our source code, we cannot follow the
usual rule of putting a period inside quotation marks. If
we put the period inside the quotation marks, the story
would say, "You can see the. professor."

 Note, also, that, within the description of the
professor, we use brackets in a way that we have not
seen before. Within quoted material, such as the
professor's description, brackets can be used to specify
a condition under which some text will be shown to the
reader.]

The professor is a woman. The

 162

description of the professor is "A smart

and kindly lady, but elderly and not too

spry. [if the professor is pleased] The

professor looks pleased with you[end

if]." The professor is in Coburn 301.

The indefinite article of the professor

is "the".

 [Next, we create an object, in the form of a noun.
The default qualities of this object allow the play to pick
it up and carry it around. These defaults also cause the
item to mentioned in room descriptions.]

The marker is a thing in Coburn 301. The

description of the marker is "An ordinary

black dry-erase marker."

 [Here we create another object, but this one is an
example of scenery. If an object is scenery, the player
cannot pick it up, and it is not mentioned separately in
the description of a room.

 The reader will not be able to interact with the
whiteboard, except by looking at it.]

The whiteboard is scenery in Coburn 301.

The description of the whiteboard is "An

ordinary whiteboard, which the professor

has been using in her presentation."

 163

 [Here we create some scenery with a plural name,
"desks." Also we create two synonyms, "desk" and
"chair."]

Some desks are scenery in Coburn 301. The

description of the desks is "Ordinary

desk-chair furniture." Understand "desk"

and "chair" as the desks.

Some students are scenery in Coburn 301.

The description of the students is

"Ordinary collegiate scholars."

Understand "student" as the students.

 [Rules constitute a major component of any IF
story's source code. Rules control, to a great extent,
how the story unfolds. This is our first rule, carried out
when the story starts.]

When play begins, say "It's another

typical day in College Writing II. The

professor is illustrating the use of

thesis statements, using a whiteboard,

when she drops her marker on the floor.

She appears to be a little hesitant to

bend down and pick it up."

 [Next, we create an "instead" rule. This rule causes

 164

something interesting to happen when we try to give the
marker to the professor. Notice the precise use of
parallel structure in this rule.]

Instead of giving the marker to the

professor:

 say "The professor thanks you with

 notable sincerity. You have

 demonstrated the virtue of

 thoughtfulness.";

 move the marker to the professor;

 now the professor is pleased;

 increase the score by 5.

 [Here we create another rule. This one takes effect
after Inform has allowed the player to pick up the
marker.]

After taking the marker:

 say "As you pick up the marker, you

 notice that there's a Zune

 MP3 player on the floor, under your

 chair. The Zune isn't yours, though

 you wish it were. In fact, you

 recognize the

 Zune as the property of Matt, who's

 slouched beside you.";

 move the Zune to Coburn 301.

 165

 [Here we create the Zune, in the form of a noun.
Notice that the Zune isn't anywhere when we create it.
We move it to Coburn 301 when the player takes the
marker.]

The Zune is a thing. The description of

the Zune is "A slick new music player."

Understand "ipod" and "mp3 player" as the

Zune.

Matt is a man in Coburn 301. The

description of Matt is "A sincere, if

slightly lethargic, young man, wearing a

UMass Lowell sweatshirt. [if Matt is

pleased] Matt looks quite happy right

now[end if]."

Instead of giving the Zune to Matt:

 say "Matt nods. He looks a little

 surprised at getting his toy

 back so easily. You have demonstrated

 the virtue of

 honesty.";

 move the Zune to Matt;

 now Matt is pleased;

 increase the score by 5;

 [Next, we create a numerical variable called
"questioning." We'll use this number to vary what the

 166

professor says when she questions the
player/character.

 The first time the professor asks her question, the
value of the questioning variable will be zero, its default.
However, in a rule we'll create later, we'll increase the
value of the variable when she speaks.]

The professor has a number called

questioning. The questioning of the

professor is 0.

 [Here we create an "every turn" rule. At the end of
every turn, Inform will check to see if it should carry out
this rule. We'll use our numerical variable to vary what
the professor says.

 The first time the professor asks her question, the
value of the numerical variable will be zero, its default.
However, after she asks, we'll increase the value of the
variable to one.

 Note, also, the use of single quotation marks within
the double quotation marks. For the player, Inform will
display the single quotation marks as double quotes.]

An every turn rule:

 if the score > 8:

 if the questioning of the professor

 167

 is 0:

 say "The professor turns to you

 and asks, 'Now, Jamie,

 can you tell us who wrote

 Plato's [italic

 type]Republic[roman type]?'

 Unfortunately,

 you've never heard of this

 work.";

 increase the questioning of the

 professor by 1;

 if the questioning of the professor

 is greater than 0:

 say "The professor says, 'Jamie,

 I know you can figure

 this one out. Who wrote Plato's

 [italic type]Republic[roman

 type]?'"

 [Here we create a rule to enable the player to
answer the professor's question. This rules also ends
the story/game with the success of the player. Notice
that Inform can understand the verb "answer." In Inform,
it is also possible to introduce new verbs. We can even
create verbs that can be used with particular
prepositions.]

Instead of answering the professor that

"Plato":

 168

 say "The professor expresses

 appreciation of your insightful

 response. You have demonstrated the

 virtue of intelligence.";

 increase the score by 5;

 end the story saying “Congratulations!

 You have proven to be virtuous.”

 [Finally, we create a rule that applies when the
player/character gives any wrong answer to the
professor's question. We make this rule more general
that the previous rule because Inform will pass over a
more general rule if a more specific rule applies.]

Instead of answering the professor that

something:

 say "The professor says, 'No. That's

 not it.'"

 [Now, once we compile our story, it will be ready for
our readers.]

Inform 7 and Qualities of Good Writing

 Inform 7 can help writers to produce good prose—
prose that exhibits widely-accepted qualities of good
writing, such as unity, coherence, development, and
clarity.

 169

Unity
 Inform 7 helps to encourage, and even to enforce,
unity in some ways that we have already seen. For
example, it nudges students toward giving each story a
beginning, marked by a “when play begins” rule, a
middle, and at least one ending, indicated by an “end
the story” assertion. In addition, Inform allows a writer to
divide source code into larger and smaller pieces,
called, form largest to smallest, "volumes," "books,"
"parts," "chapters," and "sections." The Inform compiler
points directly to the names of these pieces when it
complains about problems in the source text.

 Unlike our sample story, many works of interactive
fiction require the user to move through a great many
locations. Inform helps the writer maintain the physical
unity of his or her setting by generating a simple map of
the story's locations. If the author has made a mistake in
connecting locations, the map will usually show the
error. Here, for instance, is the Inform-generated map of
a fairly complex interactive fiction.

 170

 The eighteen rooms on this map connect in clear
ways, with problem-solving required to get through the
passages marked with a brown bar. If the writer had left
a room unconnected with the rest, the map would make
the error clear.

 Also, Inform indexes all the people and objects in a
story, showing which encloses which. Writers often
check Inform's index to see how the story's parts relate
to the whole. In our brief story, for example, the index
looks like this:

Coburn 301 - room where
play begins

 professor - woman

 marker

 whiteboard

 171

 desks

 students

 Matt - man

 yourself – person

Zune

 This chart clearly shows an item that might violate
the unity of our story, the Zune, which is not inside the
story's single room. In our case, we have a good plan to
add the Zune to our tightly-unified tale; but, if, in fact, we
had inadvertently created an off-stage music player, the
index would alert us to the problem.

Coherence

 Creating an interactive fiction requires great
attention to connectedness. A story that is not coherent
in its use of rules and variables will often fail to compile
and will never execute well. In our sample story, for
example, we create the adjective variable “pleased.” If
we are to use this variable, we must do so in such a
way as to effectively connect with our story's rules. In
our rule for making the professor pleased by giving her
the marker, we must specify that “now the professor is
pleased,” not “happy” or “grateful.” Further, when we
show the professor's pleased state in her description,

 172

we must use the bracketed text “if the professor is
pleased” to connect the description with the variable,
and we must complete the connection by showing the
end of the text to which our condition applies, using the
bracketed text “end if.”

 Earlier, we noted that Inform automatically
generates a story map and an outline of the story's
elements. In addition to helping with unity, these devices
help the author to see how coherently a story's
elements connect with one another. Inform also helps
the author to manage a story's locations by facilitating
the grouping of the rooms into regions. In the sample
map that appears above, regions are color-coded.

 Just as helpful is the structure known in Inform as
the “scene.” Inform scenes are like the scenes of a play
in that they usually have clear beginnings and endings,
but these starts and stops generally depend on which
actions the player/character has always taken.
Suppose, for example, our “Narrative About Virtue” had
a second location, called the Hallway. Suppose, further,
that we want to start a new scene when the
player/character enters the Hallway, but only if she has
returned the Zune to Matt, who will help her out if she
has helped him. Let's say that, in this scene, the player,
with Matt's help rescues a cat that is stranded on top of
some scaffolding. We could create our scene with
source code like this.

 173

Rescue is a scene. Rescue begins when the player is in
the Hallway and the Zune is carried by Matt. Rescue
ends when the player carries the cat.

 Some IF writers make excellent use of scenes to
establish coherence, even in relatively simple stories.
Inform helps writers to manage scenes well by providing
a command that allows an author to see exactly when a
scene starts and ends during a trial of his or her story.
In addition, Inform offers an index of scenes that shows
how each scene begins and ends, and indicates
whether or not each scene can recur.

Development

 The creation of a readable IF story requires an
unusually studied sort of development, in at least five
areas, characters, actions, objects, rules, and
synonyms. The development of multi-dimensional
characters and the creation of new actions (and the
verbs that activate them) goes beyond the expertise that
we would expect students to develop, if we are using
Inform only as a tool to help them build their essay-
writing skills. However, even in our very brief example
story, we have seen the importance of developing
effective objects, rules, and synonyms.

 174

Development Through Implementing Objects

 As we've noted in our creation of a sample source
text, it is important for IF writers to implement the
objects that they mention in their descriptions.
Otherwise, their stories will generate inappropriate
responses that break the immersion of their readers in
the model world. Normally, the Inform compiler cannot
help much with this problem; but acclaimed interactive
fiction writer Aaron Reed has developed a system to
customize Inform code to ensure thorough
implementation of objects. Under Reed's system, when
an IF author creates text within quotations marks, he or
she put brackets around the noun that names each
important object. If the author has already implemented
the bracketed object, the brackets will have no
noticeable effect. However, if the author has not
implemented the bracketed object, the compiler will
complain, thus reminding the writer that one of the
story's elements needs more development.

 Using Reed's “Bracket Every Notable Thing”
procedure, our description of Coburn 301 would look
like the following.

Coburn 301 is a room. The description of Coburn 301 is
"A typical college classroom, with lots of [desks], a
[whiteboard], and a dozen or so [students]."

 175

In the final version of our sample story, we have
implemented the desks, whiteboard, and students. As a
result, the bracketing will have no effect on the
compiler's output. However, if we had forgotten to
implement the desks, for instance, the computer would
produce no output and would complain that it cannot
understand “[desks].”

Developing Effective Rules

 In the authoring of interactive fiction, developing
rules sufficient presents a real challenge, especially to
inexperienced writers. The Inform compiler will not
generally signal problems with rule development, but
even superficial reader-testing of a story usually will.

 For example, to new authors, our first rule for
answering the professor's question may look quite
sufficient.

Instead of answering the professor that

"Plato":

 say "The professor expresses

 appreciation of your insightful

 response. You have demonstrated the

 virtue of intelligence.";

 increase the score by 5;

 end the story saying “Congratulations!

 You have proven to be virtuous.”

 176

 However, in testing the story, a reader will soon see
that the rule is insufficient to deal with an incorrect
answer. In evaluating a rule, especially an “instead”
rule, an experienced IF writer will immediately check to
see whether the rule covers all possible situations, not
just the one that seems most likely. In the case of our
rule, as it appears above, we have accounted for only
one possibility, the correct answer. In our completed
source code, we have handled the wrong answers in a
separate, more general rule.

Instead of answering the professor that

something:

 say "The professor says, 'No. That's

 not it.'"

We could also have dealt with the possibilities in a
single rule, but such a rule might be more complex that
we want, in modeling Inform code for our composition
students.

Developing Synonyms

 Interactive fiction is a difficult form of literature for
most readers. One of the ways an IF author can help
the reader along without damaging the reader's
immersion in the story is by providing a ready supply of
synonyms for important words. A lack of such synonyms

 177

often produces frustrating and unfulfilling “guess the
verb” or “guess the noun” puzzles. The Inform compiler
can't really help with needed synonyms, but test readers
certainly can; and Inform provides a quick and easy way
to create synonyms, as we did in our description of the
Zune.

The Zune is a thing. The description of

the Zune is "A slick new music player."

Understand "ipod" and "mp3 player" as the

Zune.

Clarity

 Clarity may be the most elusive quality of good
writing. The Inform compiler cannot approach the
effectiveness of a careful reader in suggesting ways to
clarify a text, but it can help in a number of ways, when
a human reader isn't available.

Clarity in Quoted Text

 In general, Inform does not actively intervene in
material that appears within quotation marks. The writer
usually asks only that Inform print such material on the
screen, warts and all. However, in our example story, we
can see two kinds of text with quotes that the Inform
compiler does check. First, consider bracket material
within quotation marks, as in our description of Matt.

 178

Matt is a man in Coburn 301. The

description of Matt is "A sincere, if

slightly lethargic young man, wearing a

UMass Lowell sweatshirt. [if Matt is

pleased] Matt looks quite happy right

now[end if]."

 The compiler will point out any spelling errors within
the brackets, and it will report on anything that may be
missing, such as a bracket or a needed phrase “[end
if].” (However, in this particular case “[end if]” is not
strictly necessary because the conditional expression
comes at the end of the quoted material.) It will check to
see that a variable like “pleased” has been previously
defined and that it is applicable to Matt.

 The compiler will also report problems with
quotations with quotations, which must be marked with
single quotation marks, just as they would be in
standard English. If we had made the following error,
our text would not compile.

say "The professor turns to you and asks,

“Now, Jamie, can you tell us who wrote

Plato's [italic type]Republic[roman

type]?” Unfortunately, you've never

heard of this work.";

 179

We would need single quotation marks around the
professor's words to solve this problem.

Clarity in Other Text

 The Inform compiler really shines (or, some would
say, becomes really picky) in checking the clarity of
source code that is not within quotation marks. It will
reject most spelling errors, and will require end
punctuation according to rules that mimic standard
English, except that Inform allows the semicolon to end
an assertion. Inform checks for a comma at the end of
an introductory adverbial clause, though it requires the
use of a colon if such a clause is followed by more than
one assertion. The Inform compiler also insists on
parallel structure in lists of assertions. Such lists are
very common in Inform code, as in this example from
our sample story.

Instead of giving the Zune to Matt:

 say "Matt nods. He looks a little

 surprised at getting his

 toy back so easily. You have

 demonstrated the virtue of honesty.";

 move the Zune to Matt;

 now Matt is pleased;

 increase the score by 5.

 180

 On the other hand, Inform does not check for
capitalizing, though it almost always allows conventional
use of the upper case, and it does not use the
conventional comma to separate quoted text from
quoted text, as in:

Some desks are scenery in Coburn 301. The

description of the desks is "Ordinary

desk-chair furniture."

 Inform's built-in text editor helps with clarity, too, in
that it color-codes words that appear in quotation marks
and in brackets.
Here's an example.

An every turn rule:

 if the score > 8:

 if the questioning of the professor

 is 0:

 say "The professor turns to you

 and asks, 'Now, Jamie, can you

 tell us who wrote Plato's

 [italic type]Republic[roman

 type]?' Unfortunately,

 you've never heard of this

 work.";

 increase the questioning of the

 professor by 1;

 if the questioning of the professor

 181

 is greater than 0:

 say "The professor says, 'Jamie,

 I know you can figure this one

 out. Who wrote Plato's [italic

 type]Republic[roman type]?'"

“Commented” text, which the compiler ignores, appears
in green, as in

[This is our first rule. It is carried out when the story
starts.]

Inform and the Writing Process

 In addition to providing students with some insights
into the quality of the writing, Inform can help them to
understand the phases of the writing process, though
some of these phases take on some new wrinkles in the
creation of interactive fiction.

Prewriting

 Even the simplest of IF stories, such as the one
we've used as an example here, require some explicit
planning. This planning has to address the usual
concerns of narrative writing, such as plot, setting, and
character, and some concerns that address the
peculiarities of interactive fiction.

 182

 In planning a first work of interactive fiction, it makes
sense to look for brevity. Even our super-brief example
story requires 575 words of source text, not counting
comments, and getting source text to work can be a real
challenge for any new author. If we add enough
commenting to make the story comprehensible to an
intelligent, but previously uninformed, reader, we
approximately double the length. In addition, a new IF
writer should think about what does, and does not, work
well in an all-text interactive medium. IF stories do well
with exploration, discovery, and problem-solving. They
are not well suited to quick-twitch reactions.

 After finding a suitable story topic, a new author
generally does well to outline, or map, the basics of the
story's plot, characters, objects, puzzles, and setting.
The rigors of writing a story that requires computer
programming work strongly against the composing
styles of students who resist planning. An unplanned
story is virtually impossible to implement. Often IF
planning goes beyond an outline. If the story has a half
dozen or more rooms, the writer will probably produce a
map as part of his or her prewriting. In a longer story,
the author may create a list of scenes.

Drafting

 After prewriting, an IF writer often produces a
detailed prose version of the story, or at least of one

 183

possible run-through of the piece. This non-interactive
draft usually takes the form of an imagined transcript of
a session with the story. In the case of a longer story,
the author may draft a scene and implement that scene
in Inform, before going on the next scene.

 Of course, the first draft of an interactive fiction is
not complete until it has taken an interactive form. For
this reason, drafting in IF requires creating source text
and testing the source text by trying to compile it. When
the compiling fails, the writer will typically jump ahead to
the revising and editing stages of the writing process
until the text compiles, before getting back to drafting.
This sort of alternating among drafting, revising, and
editing may run against the grain for many teachers of
the writing process, while others will find this sort of
shifting quite natural. In any case, no one can deny that
producing an interactive fiction requires active revising
and editing. Without revising and editing, the source
code will simply never compile.

Revising

 Even after the source code compiles, the revising
stage of writing an IF story has a long way to go.
“Alpha” testing, by the writer herself invariably reveals
many problems that need correcting, and “beta” testing,
by others, will reveal even more issues, ranging from

 184

difficulties in character development to rules that don't
work as intended. Inform offers some tools that can
help.
 As noted earlier, Inform generates a map of the
story's model world to help with revisions, and it also
creates an outline of all the story's rooms, characters,
and objects. To help with scenes, Inform indexes all of a
story's scenes and their properties, as in the following
example.

Inform also provides a testing command, “scenes,”
which causes the playing of a story to note each scene
change when it occurs.

 185

 Rules often require revision, partly because they are
difficult to craft in themselves, and partly because they
often interact with one another in complicated ways. The
“rules” testing command is, therefore, very useful. This
command causes the story's output to list, every turn,
each rule that applies. The results of the “rules”
command can be a bit confusing at first, because it lists
not only the applicable rules that the author has created
but also the underlying, “standard” rules of the Inform
system, with which the writer's rules may conflict.
Here's an example from our sample story.

>rules

Rules tracing now switched on. Type

"rules off" to switch it off again, or

"rules all" to include even rules which

do not apply.

>take marker

[Rule "can't take yourself rule"

applies.]

[Rule "can't take other people rule"

applies.]

[Rule "can't take component parts rule"

applies.]

[Rule "can't take people's possessions

rule" applies.]

[Rule "can't take items out of play rule"

applies.]

 186

[Rule "can't take what you're inside

rule" applies.]

[Rule "can't take what's already taken

rule" applies.]

[Rule "can't take scenery rule" applies.]

[Rule "can only take things rule"

applies.]

[Rule "can't take what's fixed in place

rule" applies.]

[Rule "use player's holdall to avoid

exceeding carrying capacity rule"

applies.]

[Rule "can't exceed carrying capacity

rule" applies.]

[Rule "standard taking rule" applies.]

[Rule "After taking the marker" applies.]

As you pick up the marker, you notice

that there's a Zune MP3 player on the

floor, under your chair. The Zune isn't

yours, though you wish it were. In fact,

you recognize the Zune as the property of

Matt, who's slouched beside you.

 Variables often require revising, too, since it's easy
to make mistakes in applying them to people and
objects. Frequently, an author may think that a variable
adjective, such as our “pleased” should be applying
when the execution of the story indicates otherwise. To
help with this sort of revision, Inform provides the testing

 187

command “showme,” which reveals all of an object's
properties. Consider the following transcript, which
shows a change in whether the professor is pleased
and in what she carries.

>showme professor

professor - woman

location: in Coburn 301

unlit; inedible; portable

female

printed plural name: women

carrying capacity: 100

printed name: professor

indefinite article: the

description: A smart and kindly lady, but

elderly and not too spry.

questioning: 0

>give marker to professor

The professor thanks you with notable

sincerity. You have demonstrated the

virtue of thoughtfulness.

[Your score has just gone up by five

points.]

>showme professor

professor - woman

 marker

 188

location: in Coburn 301

unlit; inedible; portable

female; pleased

printed plural name: women

carrying capacity: 100

printed name: professor

indefinite article: the

description: A smart and kindly lady, but

elderly and not too spry. The professor

looks pleased with you.

questioning: 0

 In a typical writing class, would students use testing
tools commands like “scenes,” “rules,” and “showme”?
Probably not, until (or unless) they needed them.
However, students would, almost to a person, use the
most useful revising tool of all, Inform's “skein.” In
revising an interactive fiction, writers often need to
replay the story to a particular point. This sort of replay
can be repetitive and exhausting, but not if one uses the
skein. Surprisingly, the skein keeps track of all the
moves of every playing through of a particular story.
These attempts at working through the story can
become so numerous that Inform allows for trimming
the skein from time to time.

Here's a look at a trimmed version of the skein for our
example story.

 189

 190

 When a writer is viewing the skein in Inform, he or
she can double click on any node (or “knot”), causing
the story to play automatically to that point. If the author
has been trying to remedy a problem that occurs at the
chosen knot, the skein's replay will usually reveal
whether the remedy has succeeded. If the remedy
hasn't worked, the author can use Inform's other
revision tools, or he or she can study the game's output
to see where the problem first appears. Or the author
can try Inform's “transcript” tab, which coordinates
closely with the skein to help the author compare
various replays, some of which will likely seem more
correct than others.

 And, best of all, an IF author can depend on the
very supportive interactive fiction community for help.
Some genuinely expert writers offer free and responsive
advice at the Interactive Fiction Forum
(http://www.intfiction.org/forum/).

Editing

 We've already seen that Inform's color-coded text
editor helps with paired punctuation marks, such as
brackets, and that the Inform compiler flags a variety of
issues that call for editing. These include spelling errors,
and problems with various punctuation marks, including
quotation marks, commas, and end marks. Most Inform
authors, especially inexperienced ones, will feel that

http://www.intfiction.org/forum/

 191

they have to resolve the compiler's complaints as they
create source text, rather than postponing their editing
until later.

 Still, most of the editing that goes into an interactive
story is much like the editing of any other piece of text. It
requires close attention, benefits enormously from a
reader's help, and occurs, most profitably, after drafting
and revising.

Publishing

 Inform offers exciting options for publishing, both in
the sense of producing a polished final draft and in the
sense of reaching readers. Inform allows a writer to
produce a story that does not include testing
commands, such as “rules” and “scenes.” Such
commands only get in a reader's way. Quite easily, an
author can include, in her final, compiled draft, cover art
for her story, a booklet that introduces interactive fiction,
a website about her story, a link that allows a reader to
experience the story over the Web, and a walkthrough.

 The interactive fiction community offers an active
group of readers, too, reachable through the Interactive
Fiction Forum (http://www.intfiction.org/forum/). The
Interactive Fiction Archive (http://www.ifarchive.org/)
houses thousands of IF stories an related material. So
does the Interactive Fiction Database
(http://ifdb.tads.org). New contributions to the archive
often attract readers and, sometimes, reviewers.

http://www.intfiction.org/forum/
http://www.ifarchive.org/

 192

Competitions for interactive fiction occur often and help
to provide readers for new stories. The most prominent
of these is the annual IF Comp (http://www.ifcomp.org/).

Advantages of Inform 7

 It seems, then, that, from a writing teacher's
viewpoint, Inform 7 has some real advantages of other
programming languages. It is easy to learn. It works
with natural-language source text that takes the form of
an essay developed by process analysis. It produces
interesting prose output, in the form of interactive fiction.
Its compiler helps to flag a variety of problems, ranging
from spelling errors to completeness of rules. And its
built-in text editor, with its color-coding, helps with
revising and proofreading. These advantages feed into
ideas and processes that have strong support among
writing teachers and researchers—ideas like the
qualities of good writing and processes like prewriting,
drafting, and revising.

 But real teachers of writing may have reservations
about the time and effort needed to get students started
with Inform 7. What would constitute a truly minimalist
approach that would allow students to produce a brief
process analysis draft very quickly, perhaps in one class
period?

 One minimal sort of interactive story is the simple
riddle. A transcript of such a story might look like the
following.

http://www.ifcomp.org/

 193

A Riddle

An Interactive Fiction by Brendan

Desilets

Release 1 / Serial number 101120 / Inform

7 build 6E72 (I6/v6.31 lib 6/12N)

Riddle Room

This is a room with a big sign and a

number of toys scattered around.

The big sign poses a riddle. "What is

tall as a house, round as a cup, and all

the king's horses can't draw it up? Pick

up the correct toy to answer the riddle?"

You can also see a the rubber duck, a

Tonka truck, a Barbie doll, a miniature

robot, an old cell phone, a toy well, a

wooden plane, a plastic hammer and a

picture book here.

>take duck

 194

 *** Sorry. That's not it. ***

Would you like to RESTART, RESTORE a

saved game, QUIT or UNDO the last

command?

> restart

A Riddle

An Interactive Fiction by Brendan

Desilets

Release 1 / Serial number 101120 / Inform

7 build 6E72 (I6/v6.31 lib 6/12N)

Riddle Room

This is a room with a big sign and a

number of toys scattered around.

The big sign poses a riddle. "What is

tall as a house, round as a cup, and all

the king's horses can't draw it up? Pick

up the correct toy to answer the riddle?"

You can also see a the rubber duck, a

 195

Tonka truck, a Barbie doll, a miniature

robot, an old cell phone, a toy well, a

wooden plane, a plastic hammer and a

picture book here.

>take well

Well done! You've solved the riddle.

 *** You have won ***

 This minimal story requires very few Inform 7 skills.
The writer has to create a room, implement some
objects, and develop an instead rule or two. The source
text would look like this:

"A Riddle" by Brendan Desilets

Use no scoring.

The Riddle Room is a room. "This is a

room with a big sign and a number of toys

scattered around."

The sign is in the Riddle Room. "The big

sign poses a riddle. 'What is tall as a

 196

house, round as a cup, and all the king's

horses can't draw it up? Pick up the

correct toy to answer the riddle.'"

The rubber duck, the Tonka truck, the

Barbie doll, the miniature robot, the old

cell phone, the toy well, the wooden

plane, the plastic hammer, and the

picture book are in the Riddle Room.

Instead of taking the toy well:

 say "Well done! You've solved the

 riddle.";

 end the story saying “Congratulations!

 You have won.”

Instead of taking something:

 end the story saying "No. That's not

 it."

 After a brief study of this riddle story and its 134-
word source code, students should be able to create
their own riddle stories. Then, their challenge will be to
add enough clear comments to make the source code
intelligible. The whole essay would end up at around
300 words, quite manageable for a one-class exercise.

 197

Some Instructional Considerations

 What are the principal sticking points in teaching
students to use Inform 7? In simple cases like the riddle
story, there's just one — the introduction of the rule.

 Seven years of working with students aged eleven
to thirty have made it clear that no one has much
trouble with the creation of rooms and portable objects.
Even with a half hour of instruction, about ninety-nine
percent of students can produce a compiled story with
at least one room. With similar teaching, about ninety-
three percent can produce portable objects.

 However, the percentage of success drops to about
two thirds when students try to produce simple, “When
play begins” rules. And only about half of students can
produce more complex “Instead” rules, without more
extensive instruction and/or individual help.

 The difficulties with rules occur in two principal
areas, formatting and vocabulary. The correct formatting
of rules requires a grasp of Inform's idiosyncratic (but
sensible) use of colons, semicolons, and tabs. An earlier
section of this essay, “A Look at Inform 7 Code,”
addresses the formatting of rules in Inform. The
vocabulary issues are a bit more complicated in that
they demand some instruction in two kinds of word that
Inform understands. Inform's documentation offers
extensive lists of all the sorts of words that the authoring
system recognizes. The docs also explain how a writer
can expand Inform's vocabulary. Because familiarity

 198

with Inform's vocabulary is so useful for authors, Inform
includes word lists in the “Index” tab on its default
screen. These lists may be too elaborate for beginners
to use right away, but they become indispensable
resources, as students become more proficient writers.
For new IF writers, the lists of words that appear below
will probably prove more than adequate.

 One of the word types that Inform understands
consists of vocabulary that the interactor can use in
reading the story. An example of such a command
would be “taking,” in the rule

Instead of taking the scroll:

 say “The scroll seems unusually heavy

 as you pick it up.”;

 move the scroll to the player.

The more commonly-used words of this sort include the
following:
taking (as in “taking the pistol”);
removing;
opening;
examining;
going (as in “going north in the kitchen”);
inserting (as in “inserting the pistol into the holster”);
dropping;
entering (as in “entering the booth”);
exiting;
asking (as in “asking Jeff about 'the key'” or asking Jeff
for the key);

 199

telling (as in “telling Jeff about 'the key'”)
and
answering (as in the odd-sounding “answering that
'Plato.'”)

 A second type of word consists of vocabulary that
the player cannot use. In the “Instead of taking the
scroll” rule that appears above, the verb “move” would
be example of this second type of word.

Commonly-used words and phrases of this type
include the following:
now the ______ is ______ (as in “now the player carries
the knife,” or “now the player is in the kitchen,” or “now
the door is open”);
move (as in “move the pistol to the kitchen”);
say (meaning “print words on the computer screen,” as
in “say 'Congratulations! You have obtained the babel
fish.'”);
end the story (as in “end the story saying “The Sorcerer
transforms you into a newt. Thus you have failed in your
quest. But why not try again?”);
stop the action (referring to the action described in the
current rule); and
continue the action.

We’ll deal, at greater link with this question of the
author’s vocabulary in our next chapter, when we
discuss the distinction between an action and a verb.

 200

Obtaining Inform 7

 Users of MacOS, Windows, and Linux can
download Inform 7, free of charge, at
http://inform7.com/download. The Mac and Windows
versions are a bit more complete than the Linux
variation. Web users can find a limited, but very
convenient, version of Inform 7 at http://playfic.com. The
Playfic variation does not offer most of Inform's revision
tools, such as the skein and the transcript, but it works
well for many student projects.

Table 1--Inform 7 Versus Four Other Programming
Languages

Language Easy to Learn Natural
Language
Source Code

Natural Language
Output

Readable Process
Analysis Essay

Logo Yes No Not Usually No

Inform 6, TADS No No Yes No

Adrift Yes No Yes No

Inform 7 Yes Yes Yes Yes

Inform 6 and TADS (The Adventure Development
System) are programming languages that help authors
to produce interactive fiction. Adrift is a menu-based
system for producing works of interactive fiction.

http://inform7.com/download
http://playfic.com/

 201

Chapter 9 --Why Inform 7?

 How can writing teachers use Inform 7? Chapter 8
of this book tries to answer this question. It offers a
tutorial on Inform 7, too. For most readers, Chapter 8 is
a prerequisite for the essay you are reading now.
Readers who are unfamiliar with Inform 7 really must
start with Chapter 8, or something very much like it. But
why, exactly, should teachers choose Inform 7? The
current chapter will look at this question in two ways.
First, it will answer in terms of two broad advantages.
These advantages are the development of clear thinking
through programming, and the creation of essays that
simultaneously represent two different modes of
discourse, exposition and narration. Then, “Why
Inform?” will describe a series of tools for writers that
Inform 7 provides, showing how these tools correspond
to familiar writing-process implements, such as outlines
and storyboards.

Clear Thinking Through Programming

 Inform 7 is a programming language, though it’s
much friendlier and easier to learn than other
programmers’ utilities. For many years, scholars have
noted that the process of writing good computer code is
similar to that of writing good stories and essays, and
have wondered whether the right sort of programming
experience might improve students’ composition skills.

 202

Perhaps the most prominent of these scholars is
Seymour Papert, whose seminal book Mindstorms:
Children, Computers, and Powerful Ideas (1981)
captured the imaginations of many educators. Papert
advocated the use of child-friendly programming
language called Logo to help students apply “powerful
ideas,” such as constrictive repetition (recursion) and
the organizational relationship of parts to wholes. (For
an example of how Logo can help writing teachers,
have a look at “Logo and Extended Definition,” at
http://bdesilets.com/if/Logo.pdf). Today, Linda Sandvik
and her associates teach programming to ten-year-olds
in the UK, following a similar rationale and a variety of
coding software, including Scratch, which is especially
relevant for very young children. Inform 7 requires, and,
to some degree, teaches powerful ideas, too. However,
for learners who are in their teens and beyond, Inform 7
can be more useful for writing teachers than other
programming environments because it requires, and
enables, students to write computer code that consists
of ordinary English sentences. These sentences add up
to an expository essay of the process-analysis type. In
addition, Inform 7’s code results in output that takes the
form of another familiar mode of discourse, a prose
narrative.

“Two Birds” (Two Modes of Discourse)

One reason to use Inform 7, then, is its unique way

 203

of providing students with rigorous practice in at least
two of the traditional modes of writing, exposition and
narration. As a very simple example, consider this
ridiculously-brief interactive story.

A Riddle

An Interactive Fiction by Brendan

Desilets

Release 1 / Serial number 101120 / Inform

7 build 6E72 (I6/v6.31 lib 6/12N)

Riddle Room

This is a room with a big sign and a

number of toys scattered around.

The big sign poses a riddle. "What is

tall as a house, round as a cup, and all

the king's horses can't draw it up? Pick

up the correct toy to answer the riddle."

You can also see a the rubber duck, a

Tonka truck, a Barbie doll, a miniature

robot, an old cell phone, a toy well, a

wooden plane, a plastic hammer and a

picture book here.

(At this point, the reader sees a prompt like this “>,”
indicating that he or she can type in any response that
he or she likes. Let’s say that the reader types the

 204

following.)

>take well

“Well” done! You’ve successfully solved

the riddle, thus completing the story.

 In order to produce this very simple narrative, the
student would have to write “source code” consisting of
a brief process-analysis essay, which tells the computer
how to present the story. The source code would look
something like what follows.

"The Riddle Room" by Brendan Desilets

The Riddle Room is a room. "This is a

room with a big sign and a number of toys

scattered around."

The sign is in the Riddle Room. "The big

sign poses a riddle. 'What is tall as a

house, round as a cup, and all the king's

horses can't draw it up? Pick up the

correct toy to answer the riddle.'"

The rubber duck, the Tonka truck, the

Barbie doll, the miniature robot, the old

cell phone, the toy well, the wooden

plane, the plastic hammer, and the

 205

picture book are in the Riddle Room.

Instead of taking the toy well:

 say "Well done! You've solved the

 riddle.";

 end the story saying “Congratulations!

 You have won.”

 In order to get even a very simple story to work, an
author has to think through the narrative elements that
teachers often ask their students to consider, such plot
and setting. However, Inform 7 has its own unique way
of pushing students in the right direction. With respect to
setting, for example, Inform 7 insists that the author
create at least one location. Inform does not allow a
simple example story without an assertion like “The
riddle room is a room.” Without such a sentence, Inform
will not create a story that “compiles” or runs at all. With
respect to plot, Inform requires that the author declare
explicitly when an ending of the story has been reached.
In our simple story, we need a statement like “end the
story.” Otherwise, the story continues forever, in a
blatantly unsatisfactory way, without any clear
resolution.

 In helping their students to write process analysis,
or “how to” essays, teachers often stress the need for
writers to create a series of clear, articulated steps.
Inform 7, to a considerable degree, mandates such

 206

steps. In our “Riddle” example, for instance, the story
would be utterly incomprehensible with the step that
creates the sign and provides its description. Without
the step that creates the toy well, the rubber duck, and
the other playthings, it would become quickly obvious
that the reader would be unable to make the slightest
progress. Without such progress, the story really would
have no plot at all.

 There’s an example of a process-analysis essay
that uses Inform in the previous chapter of this book.

Familiar Tools for Writing -- the Outline

 Another way to understand Inform 7's usefulness for
writers, and for teachers of writing, is to consider some
traditional tools for composition and Inform's
corresponding utilities. One such tool is the outline.
Writers use outlines in various forms for varying
purposes. Sometimes outlines are quite formal; at other
times, they are “quick and dirty.” In the course of
prewriting, some authors make outlines to organize their
material before drafting. Other writers favor outlining as
a revision technique, used to check a draft’s unity and/or
organization. Some use outlining in both ways.
Teachers of writing sometimes like outlining because it
helps students to understand what we mean by “unity,”
“coherence,” and “organization.”

 207

 Inform 7 provides several different outlining tools, all
of them useful for at least some writers. The most
obvious of these allows an author to categorize the
divisions of a story in a built-in hierarchical system,
which writers usually employ to map a story. The system
looks like this:

Volume

Book
Part

Chapter
Section

 Inform lets writers use any, none, or all of these
categories, but it rewards authors for using them by
keying its error messages to the categories. In other
words, when Inform detects an error in an author’s
code, it points to the category in which the problem has
occurred. Thus, Inform provides student writers with a
special incentive to use a type of outlining as a
prewriting technique. Of course, many student projects
will not require all five of Inform’s category types, but
many projects become more manageable through the
use of one or two.

 Another of Inform’s outlining tools enables the writer
to quickly see which of the story’s objects enclose other
objects. This tool appears under the Index/World tab of
the Inform 7 application. Let’s think of our “Riddle

 208

Room” example to illustrate. When the story begins, the
Index/World tab reveals an outline that looks like this:

Even in the case of this very simple story, this sort of
outline can be useful as the writer revises. If, for
example, the author had made the common mistake of
creating the object called the “wooden plane” but had
forgotten to place it in the Riddle Room, the outline
would clearly show the error. Inform 7 updates this
outline throughout the testing of the story. If, for

 209

example, we ask Inform to generate this outline after the
player has picked up the rubber duck, we would get

Riddle Room--room where play begins
 big sign
 Tonka truck
 Barbie doll
 miniature truck
 old cell phone
 toy well
 wooden plane
 picture book
 plastic hammer
 yourself -- person
 rubber duck

 It’s easy to imagine how useful this sort of outline
can be, as an author creates more rooms and objects,
some of which can contain one another.

Familiar Tools for Writing -- the Map

 Inform 7 offers no facility for creating idea maps,
such as those generated by computer programs like
Inspiration and FreeMind. However, Inform can help
writers to make maps of their stories’ settings. Many
writers of conventional narratives, and of other works,
use such maps as prewriting and revising tools.
Mapping is especially helpful in interactive fiction

 210

because most works of interactive literature, unlike our
ultra-quick “Riddle Room” example, require the reader
to move from place to place. Inform 7 automatically
creates a map of each of a story’s locations, showing
the connections among them. Inform displays these
maps in the “Index/World” part of the program. Here’s
an instance, which represents, in part, a story that takes
place on several floors of a building:

 Notice that this map shows not only the locations,
with their names abbreviated to two letters, but also the
ways in which they are connected and the levels on
which they exist. Though the locations in this story are

 211

not particularly numerous or complex, this sort of map
makes it easy to identify and repair the kinds of
problems that frequently occur, as students write
interactive stories. The room that appears at the bottom
of this map is labeled “Tm” (for “Tomb” in this case). The
red arrows at the top of “Tm” indicate that the player can
go in the direction “Up” from this location. But suppose,
for example, that the author had erroneously created
the room abbreviated “Tm” without connecting it to the
room above it. The map would immediately show the
error.

Inform automatically generates the “levels” that
appear in our example map, whenever the author
creates a location that is up or down from another
location. However, Inform also allows the writer to invent
his or her own regions, which can contain various
locations. Inform color-codes these regions on its map,
as in the following:

 212

 This map shows that all of the rooms in the “Second
Level Down” (“down” from the starting level, that is) are
in the same region as one another. Inform has mapped
these rooms in pink. The writer has created a second
region to contain most of the rooms in the “Third Level
Down.” This region is mapped in purple. Two of the
rooms on the “Third Level Down,” however, are not in
any region at all, as shown by their white coloration.

 Inform’s mapping facility, then, offers student-writers
a friendly mapping tool for their story planning and for
their revising and debugging. This mapping system is
largely automatic in its handling of levels and
connections, but it’s also easy to customize through the

 213

use of author-created regions. An Inform 7 map often
provides a clear and useful visualization of a story’s
physical coherence (or, perhaps, its lack of coherence).

Familiar Tools for Writing -- Storyboards

 Writers of stories often make storyboards to plan out
the scenes of their narratives. Storyboards often depend
largely on pictures, but, of course, they can make good
use of text, too. Inform 7 sticks with the words. Inform
doesn’t force its authors to formally create scenes, but it
makes it easy for them to do so. Once scenes have
been created, Inform represents them, using two
different tools. The author of an extremely simple story
like “The Riddle Room” would probably not employ
scenes, but writers of more complex tales almost
always use them, often to the extent that managing
scenes becomes a major debugging (revising) task.

The Scenes Index

 One of Inform’s tools for representing scenes is in
the Index/Scenes part of the program. This utility lists all
of the story’s scenes and offers useful information about
each of them. Let’s say that a writer has created four
scenes in a story based on the opera Dido and Aeneas.
Inform’s Index/Scenes tab might reveal something like
this:

 214

 Note that the “Entire Game” counts as a scene,
which encompasses all the other scenes. The
Index/Scenes tab also provides more detailed
information about each scene, as appears here:

The Entire Game scene recurring

The Entire Game scene is built-in. It is

going on whenever play is going on. (It

is recurring so that if the story ends,

but then resumes, it too will end but

then begin again.)

 215

Begins when: the story has not ended

Ends when: the story has ended

The Cursing scene

Begins when: the player is in the Lair of

the Sorcerer

Ends when: the Magician is triumphant

The Grovedance scene

Begins when: the player is in the Grove

and the Magician is triumphant

What happens:

 (move Aeneas to the Grove; ...)

Ends when: the Magician is prophetic

The Shipcurse scene

 216

Begins when: the player is in the Beach

and the Magician is prophetic

What happens:

 (move the enchantresses to the Beach;

...)

Ends when: the Magician is finished

The Tryst scene

Begins when: play begins

Ends when: Dido is off-stage

 Here, we can see the events that mark the
beginning and end of each scene. If a particular event
happens at the beginning of the scene, we can see
what that event is. If a scene can happen more than
once, we can see that the scene is “recurring.” In our
example, each of the scenes will occur only once,
except the “Entire Game” scene.

 217

The “Scenes” Debugging Command

 When problems with scenes develop during the
writing of an interactive story, as they very frequently do,
the information in the Scenes Index can be quite helpful,
but the “Scenes” debugging command usually works
even better. The writer uses this command while testing
the story, as it runs within the Inform application. For the
most part, this test run of the narrative looks exactly as
it would look to a reader, except that the author has
some special “debugging” commands that will not be
available to readers. Let’s suppose that the writer of our
“Dido and Aeneas” story types the command “scenes”
as soon as the story starts. The output will look like this:

>scenes

Scene 'Entire Game' playing (for 0 mins

now)

Scene 'Tryst' playing (for 0 mins now)

(Scene monitoring now switched on. Type

"scenes off" to switch it off again.)

 A few turns later, the “scene monitoring” function
that the author activated reports

[Scene 'Tryst' ends]

Now, the “scenes” command shows the

following:

 218

>scenes

Scene 'Entire Game' playing (for 5 mins

now)

Scene 'Tryst' ended

(Scene monitoring now switched on. Type

"scenes off" to switch it off again.)

The information that the scene “Tryst” started and
ended when it was supposed to is of considerable
importance to the writer. When something goes wrong,
as it often does, the “scenes” command assumes even
greater importance, since it points, quite specifically,
toward the problem.

 In effect, then, Inform 7 automatically creates a
detailed storyboard in a way that helps writers construct
a clear and coherent narrative. Thus, Inform offers
students a dramatic instance of the value and
techniques of effective storyboarding.

Familiar Tools for Writing -- The Word Processor

 Most writers prefer to write with a word processor.
Interactive fiction authors, though, are often especially
appreciative of the text editor that comes with Inform.
Like many programmers’ text editors, the Inform utility
makes the writer’s work more efficient through a helpful
system of color coding. In Inform, instructions to the

 219

computer appear in black, and text that is to be printed
to the screen is dark blue. Sometimes, Inform
programmers include instructions to the computer within
printed text. These instructions appear in light blue. The
programmer’s “comments,” which make the source
code easier for humans, including the author, to
understand, are green. The example that follows may
look as if it’s contrived just to show off Inform’s color
system, but, actually, the source code comes from a
real IF story and is quite typical.

[Rooms]

The Palace Knoll is south of the Path.

The description of the Palace Knoll is "A

secluded green knoll, with a park bench,

near the stately Palace of Dido, the

Queen of Carthage. An overgrown path

leads north." The description of the

Path is "[if visited]A simple path,

leading toward a dark, craggy area to the

north. You can also follow another path

to the east.[otherwise]You enter a simple

path, branching toward a dark, craggy

area to the north and a lovely forest to

the east; however, immediately after

leaving the Palace Knoll, you are

attacked by a pack of vicious hounds.[end

 220

if]”

 At the top of this example text, we find a comment,
[Rooms], suggesting that the next section of code will
implement the various locations of the story. The
brackets identify this text as a comment, and Inform
marks the comment in green, helping the writer to avoid
such common mistakes as failing to close the brackets
correctly. The next bit of text is

The Palace Knoll is south of the Path.

 This text appears in black type because it
addresses the computer itself (or perhaps it addresses
Inform, depending on how you look at the nature of a
programming language). This text creates two locations,
or “rooms,” called “Palace Knoll” and “Path,” the former
located immediately south of the latter. A few words
later, we find the description of the Palace Knoll,
enclosed in quotation marks and colored dark blue. If
the writer had inadvertently ended the description with
an apostrophe rather than a closing quotation mark, the
color coding would clearly indicate the typo.

 The description of the Path is a bit more
complicated, since it actually consists of two different
descriptions. The descriptions are within quotation

 221

marks and are coded in blue. One description, the one
that appears first in the text, is the usual description of
this location. It is the description that the reader would
see if he or she had visited this room before. Thus, this
description is marked [if visited], with the bracketed text
shown in lighter blue, since the bracketed words do not
actually print on the reader’s screen. The second
description would appear only if the reader had never
visited this location before.

Familiar Tools for Writing -- the Usage Checker

 Many word processors, including Microsoft Word,
include software that checks for various usage errors,
such as mistakes in punctuation and sentence structure.
These checkers are usually so unreliable that few
writers use them. Oddly, these checkers often do not
check for errors that they actually could get right
consistently, such as unpaired parentheses or quotation
marks.

 Inform 7, though, like most other programming
languages, requires the use of a specialized sort of
usage checker called a compiler. The compiler carries
out the essential task of translating the source code that
writer creates into a form that a computer can read.

Of course, programmers, like all other writers, make
mistakes. In a programming environment, many, though

 222

not all, of those mistakes cause the compiler to be
unable to do its work. When the compiler finds that it
cannot translate source code in a machine-readable
form, the compiler tries to point the programmer toward
the code that is problematic, often with a line number
and a brief, cryptic description of the error.

The Inform 7 compiler is much friendlier than those

of most other languages. Since Inform 7 doesn’t usually
use line numbers, the Inform 7 compiler provides the
writer with a link to the erroneous source code. Most of
the time, Inform also offers a reasonably well-developed
and clear description of the problem it has found in the
code.

 To illustrate, let’s start with a simple of example of
problematic source code:

The Kitchen is a rom. The

desciption of the Kitchen is “An

ordinary food-preparationn area.”

 When we try to compile this code, we get the
following result:

 223

 The compiler has found two errors in this source
text. Clicking on the orange arrows that appear in
the problem reports will cause the offended
passages to be highlighted in the writer’s source
code, showing, with come precision, where the
difficulty is.

 The compiler first identifies “The Kitchen is a
rom” as problematic. Inform is not smart enough to
guess that “rom” is just a misspelling of “room,” but
it does provide an error message that would help
most writers. In fact, Inform offers a highly relevant
example of good code, “Abbey Road is a lighted
room.”

Then the compiler finds a second mistake, “The
desciption of the Kitchen is ‘An ordinary food-

 224

preparationn area.’” Once again, Inform does not
realize that the problem is really a spelling error
(“desciption”). This time, though, Inform’s
description of the error, though perfectly accurate,
would be much less helpful to a novice writer.”

Notice that the compiler does not find a third

spelling error, “food-preparationn.” Because this
misspelling occurs in text that is to be printed to the
screen, the compiler does not try to understand the
word “food-preparationn,” nor does it check the
word’s spelling. Instead, the compiler assumes that
its job is simply to see that the text appears for the
reader, exactly as the writer has typed it in. Inform
does have its own spell checker, which works
separately form the compiler. This spell checker
would have found all three errors, though most
writers run the compiler more often than the spell
checker and so would have found the first two
errors more quickly, when the compiler pointed
them out.

Of course, many coding errors are not just

spelling mistakes or typographical errors. The more
advanced errors offer writers an opportunity, and
some motivation, to check into Inform’s well-indexed
documentation, or to ask for help from other
authors. In any case, the compiler enforces a
certain care and precision in any writing of Inform

 225

code.

Familiar Tools for Writing -- Transitional Words
and Phrases

 Teachers of writing often suggest to students
that they check the coherence of their writing. One
tool for establishing coherence is the transitional
word or phrase, such as “however,” or “on the other
hand.” Most writing texts offer lists of commonly
used phrases of this sort, but writing teachers
usually put just as much stress on the use of
transitional devices that arise more spontaneously
in particular pieces of writing. For instance, in order
to improve coherence, a writer may use a technical
term, such as “compiler,” and judiciously repeat this
word and its forms.

 In interactive fiction, programming structures
called “values” provide great transitional power. In
fact, writers sometimes think of Inform’s values as
ways for one part of an Inform story’s code to send
“messages” to another part. Suppose, for example,
that, in one part of an interactive story, the main
character may or may not drink a triple shot of
whiskey. Suppose, further, that, an hour later in
game time, the character may or may not decide to
drive a car. The Inform author will likely use a value
to send, to the later part of the story, a message

 226

about whether the character imbibed heavily earlier
in the game.

 Inform tries to make the use of values both
simple and powerful. In order to do so, it enables
the writer to set up values in more than one way.
Perhaps the most powerful way to implement a
value is to create it as a noun, along with adjectives
that are related to the noun. Here’s an example:

Sobriety is a kind of value. People

have sobriety. The sobrieties are

drunk and sober. A person is usually

sober.

 This source text enables Inform to understand
“drunk” and “sober” as adjectives that may or may
not apply to any person in the story, including the
“player/character,” the character that the reader
controls. The phrase “A person is usually sober,” in
the source text as we have written it, establishes the
starting condition for this value. In other words, the
player/character, and all other characters, start out
sober, unless the writer explicitly declares
otherwise. However, events in the story may cause
the player’s condition to change.

Now that we have created the adjective “drunk,”
the phrase “when the player is drunk,” is a condition

 227

to which Inform can respond in whatever way the
author deems appropriate. For instance, the writer
could notify the reader of the player/character’s
sobriety after every turn of the story, using the
following source code:

Every turn when the player is sober,

say “You are sober.”

Once the sobriety value is established, the writer
can change its state. For example, the following
code would produce a change when the
player/character imbibes.

The player carries some whiskey.

Instead of drinking the whiskey: say

“You drink the whiskey”; now the

player is drunk.

 The use of values in interactive fiction is a bit
abstract and elusive for many new writers. However,
Inform 7 offers two tools to help. One of these is a
listing of values which, like our “sobriety” example,
are set out as “types of value.” This listing appears
in the Index/Kinds tab of the program. For our
“sobriety” example, the relevant section of the
Index/Kinds tab looks like the following:

 228

Value Default Value

 Sobriety[2] sober

 Inform also offers a debugging command that
an author can use while testing a story. This
command, “showme,” offers a listing of information
that includes the state of relevant values. In our
example, “showme me” yields this information about
the player/character, if he or she has not consumed
the whiskey:

>showme me

yourself - person

 whiskey

location: Kitchen

singular-named, proper-named; unlit,

inedible, portable; male

printed name: "yourself"

printed plural name: "people"

indefinite article: none

description: "As good-looking as

 229

ever."

initial appearance: none

carrying capacity: 100

sobriety: sober

 After the the player/character imbibes, we’d get
the following:

>showme me

yourself - person

location: Kitchen

singular-named, proper-named; unlit,

inedible, portable; male

printed name: "yourself"

printed plural name: "people"

indefinite article: none

description: "As good-looking as

ever."

initial appearance: none

carrying capacity: 100

sobriety: drunk

 For almost all inexperienced writers, it’s difficult
to create a strong sense of coherence in any sort of
writing. For writers of interactive fiction, values can
help to develop good coherence, but only if they are
implemented correctly. By using Inform’s tools for
creating well-thought-out values, novice writers can
sharpen their understanding of just what it takes to

 230

write coherently. Indeed, writers of interactive fiction
really have to write coherently, using values and
other techniques, if they are to produce works that
look like IF stories at all. In its own way, Inform 7
enforces coherence.

Familiar Tools for Writing -- Dictionaries and
Thesauruses

 Like all writers, IF authors have to choose the
right words. For this purpose, they have to find
words that are potentially “right.” However, in using
a programming language, the notion of “right word”
takes on a whole new meaning, because the
language understands only a small subset the
words from any natural language, such as English.
Inform offers the writer two important tools for
identifying words that the language can understand.
One of these tools focuses on what Inform calls
“actions,” and the other offers information about
“phrases.”

A Thesaurus of Actions

 In Inform, the following code will compile and
work:

Instead of taking the anvil, say

 231

“That’s too heavy to lift.”

But this code will not compile:

Instead of picking up the anvil, say

“That’s too heavy to lift.”

The problem centers on the way Inform handles
actions that the reader can invoke.

 Inform 7, in its native form, allows readers to
use a total of 143 verbs. “Take” is one of those
verbs, and so is “pick up.” However, Inform 7, in its
native form, understands only eighty different
actions. The sixty-three verbs that are not actions
serve as synonyms that the reader can use. The
writer, though, must use the single unique word
that Inform recognizes as an action. Let’s look at
our example rule once again:

Instead of taking the anvil, say

“That’s too heavy to lift.”

 If the writer has implemented the anvil, this rule
will compile and work. In a story that uses this rule,
the player can type “Take the anvil,” and get the
response, “That’s too heavy to lift.” The player can
also type “Pick up the anvil,” and get the same
response. If the player types, “Grab the anvil,” the

 232

response will be “That’s not a verb I recognize.”

 If a writer wants to allow new synonyms for an
action, he or she can do so quite easily. To add the
“grab” synonym for “take,” the writer would add the
following code:

Understand “grab [something]” as

taking.

 Implementing new actions is a bit more
complicated than creating synonyms, but Inform
writers can make as many new actions as they like,
too.

 Inform 7 provides several tools to help readers
with its specialized vocabulary. One of these is
accessed though Inform’s Index/Actions tab. This
tool lists all of the actions that Inform understands,
including any new actions that the author has
created, along with the synonyms of each action.

Inform 7 also offers an “actions” debugging
command, which an author can use while playing
through a story. With the many ways in which
actions and their synonyms can interact, this
command can help a writer to sort through what’s
really happening behind the scenes of an IF work.
The “actions” command can prove especially helpful

 233

when a story is not behaving the way the author
expects.

A Thesaurus of Phrases

Of course, not all problems with Inform 7

vocabulary involve actions. Consider another bit of
code that will not compile:

Rather than taking the anvil: say

“That’s too heavy to lift.”

In this instance, Inform’s rigid preference for
“instead of” over “rather than” does not hinge on any
particular action. To sort out this sort of vocabulary
problem, Inform offers its Index/Phrasebook tab.
The tab offers rather long list of phrase types, each
followed by a magnifying glass icon that links of an
explanation. Here’s a look at part of what this tab
offers.

 234

Using Inform’s Thesauruses

 A good dictionary or thesaurus can help
students to use words more clearly and precisely. In
its own, demanding way, however, Inform goes
much farther. In order to get a story to compile and
run, a student author of an Inform story must use
the vocabulary of action words and function words
precisely. Sooner or later (usually sooner), Inform
writers develop a considerable facility with the tools
that help them to achieve this kind of precision.

 235

Familiar Tools for Writing: Rereading to Revise
and Edit

 Student writers usually learn a variety of
techniques for rereading their work to spot likely
sites for improvement. Some become experts at
rereading once for unity, a second time for
coherence, and a third time for clarity. Some use
mnemonics like CUPS (capitalizing, usage,
punctuation, spelling) to help them with their editing.
Many learn to read the work aloud in order to “hear”
problems. Writers of interactive fiction face a
particularly time-intensive task when they seek to
reread a story, since any particular reading requires
the inputting of a series of commands that the
reader might type. As a story becomes more
complex, this list of commands can become very
lengthy.

Inform 7 addresses this issue with a tool called
the “skein,” which records all the input that the writer
uses in testing a story and allows for the nearly-
instantaneous playback of that input. The skein is
so important that it has its own tab in the Inform
application. Let’s take a look at a skein that
represents five iterations of our “Riddle Room” story.

 236

 This skein shows three run-throughs of the

 237

story that reach its conclusion, which occurs with
the taking of the well. However, the skein recalls all
the iterations the author has tried, including, in this
case, two iterations that did not reach a conclusive
result. Let’s suppose that an author has made some
changes to the code that involves the hammer and
wants to see the result. Instead of inputting a series
of commands by hand, the writer can open the
skein and double-click on any of the skein’s nodes,
thus causing the story to run itself up to that point.
In this case, the author might click on the “take
hammer” node. Then, the author could examine the
output to see that her changes to the code
produced the desired result.

As one might imagine, the skein can be handy

in revising even a very simple story like our “Riddle
Room” example. For revising a more typical story
that requires fifty or one hundred commands to
reach its conclusion, the skein is invaluable.

The skein offers an unusual pedagogical

advantage for writing teachers in that it emphasizes
an aspect of revising that students often overlook.
When students make significant revisions, as they
often should, students frequently fail to identify the
impacts of their revisions on later sections of their
essays. Even the most superficial experimenting
with the skein shows how a change in one part of a

 238

piece of writing can have unanticipated effects on
the rest of the text.

Familiar Tools for Writing: Side-by-Side
Comparisons of Drafts

 When students get into difficult tangles in
revising their essays, they often find themselves
wondering whether an earlier draft is actually better
than a revised version. Comparing the two, side by
side, can help to resolve this sort of conundrum.

 Inform 7, in its Windows and MacOS versions,
offers writers an extension of the skein tool that can
help them to make intelligent comparisons of drafts.
This tool, which does not appear in the Linux
version of Inform, is called the transcript. Like the
skein, the transcript has its own tab in a typical
Inform window.

If a writer right-clicks on a node in any Inform
skein, the resulting options will include “Show in
transcript.” This option, at first, simply shows the
output of the chosen skein, up to the chosen node,
in the “Transcript” tab. For example, consider the
screen shot of a skein that appears below. It’s from
“The Riddle Room.”

 239

This skein would lead to the successful

completion of the story. If the writer wanted to view
the output of this skein in the Inform transcript, he or
she would simply right-click on any node of the
skein and choose the option “Show in transcript.”
Now, the transcript tab would show two columns,
one of which would show with the output of the
skein that the author chose. In our case, this output
would be as follows:

Pick up the toy that solves the

riddle.

The Riddle Room

An Interactive Fiction by Brendan

Desilets

Release 1 / Serial number 130816 /

 240

Inform 7 build 6G60 (I6/v6.32 lib

6/12N) SD

Riddle Room

This is a room with a large sign

and a bunch of toys scattered around.

The big sign poses a riddle.

"What's tall as a house, round as a

cup, and all the king's horses can't

haul it up?"

You can also see a rubber duck, a

Tonka truck, a Barbie doll, a

miniature robot, an old cell phone, a

toy well, a wooden plane, a picture

book and a plastic hammer here.

>Take the well.

Congratulations! You've solved the

riddle.

In addition to showing the writer the output of

this run-through of the story, the transcript offers a
series of clickable buttons that let the author “bless”
the skein up to any particular node. Typically, an
author chooses to bless a “good” skein, a skein that
represents a desirable sequence of moves that
produces a useful result.

 241

Now, let’s suppose that the author continues to

work on the story, and, in the course of doing so,
inadvertently changes a word in the description of
the sign from “king’s” to “kink’s.” With this error in
place, if the author goes to the skein and double-
clicks on the “Take the well” node, the transcript will
compare the new version of the story with the
blessed skein, underlining all the differences
between the two. The transcript would look, in part,
like this:

 The highlighting of this typo could, of course,
be useful to a writer, but, in a longer, more complex
story, the transcript can be much more important.
Typically, in Inform, as in other programming
languages, a single erroneous revision in source
code can result in dozens of embarrassing errors in
the program’s output.

When used with a story of any significant

length, the Inform 7 transcript is likely to reveal a
significant, and sometimes surprising, list of

 242

differences between versions of a tale. For this
reason, the transcript often underscores the story-
wide implications of revision in a way that a
convention comparison of drafts cannot.

Do Students Actually Use These Inform 7 Tools?

 In a programming class, a teacher might well
assign the use of various tools that a language
offers, tools like Inform 7’s skein. However, in a
typical writing class, an instructor would probably
not do so. Instead the professor would likely work
with two kinds of assignments, short easily-
programmed exercises for all students, and
optional, more ambitious projects for the ten percent
of students who like an unusual challenge. In
response to the first assignment, students might,
after an hour or so of instruction, produce very
simple stories like “The Riddle Room,” which do not
require the use of many of the tools described here.
The tools that students must use in even the
simplest stories are still significant, however. These
include the color-coded text editor (corresponding to
a word processor) and the compiler (usage
checker). Even in very quick projects, most students
will also use the skein (reading for revising) and the
actions tab (thesaurus).

Students who take on longer stories will almost

 243

always use more of Inform 7’s tools. Of course, the
writers’ choice of implements will depend partly on
the nature of their stories. Stories that take place in
one room, for example, won’t make many demands
on the mapping utility. Nearly all authors of longer
stories, on the other hand, will use values and
scenes.

 244

Chapter 10 – The Writer's Self in Interactive Fiction

Yet Another Sample of Interactive Fiction

 Here is a transcript of a session with a simple
instance interactive fiction. The story will prove useful,
later on, when we look at a surprising sort of difficulty
that students have in crafting IF and in other kinds of
writing. The reader's input, which would vary with each
reading of the story, appears in boldface type. (A
playable version of the story is available at
http://iplayif.com/?story=http%3A//bdesilets.com/if/Trolle
y.zblorb)

It's another routine day of trolley

driving, in the neighborhood of your

local university. About two hundred

yards ahead, you can see that the trolley

track splits, one branch, which you're

planning use, leading straight ahead, and

the other offering a turn to the left.

You have just one passenger in the car,

an elderly woman, and she signals that

she'd like to get off here.

Trolley

An Interactive Fiction by Brendan

Desilets

http://iplayif.com/?story=http://bdesilets.com/if/Trolley.zblorb
http://iplayif.com/?story=http://bdesilets.com/if/Trolley.zblorb

 245

Release 1 / Serial number 121221 / Inform

7 build 6G60 (I6/v6.32 lib 6/12N)

Medford Crossing (in the Trolley)

A simple trolley stop in the suburban

community called Medford.

In the Trolley you can see an elderly

woman and a control panel (on which is a

joystick).

>Look at the woman.

A long-faced, elderly lady, perhaps

around ninety years of age. She is a

passenger on the trolley that you're

driving, and she seems to be wearing a

name tag.

>Look at the tag.

A name tag from a philosophy conference

at the nearby university. The tag reads

"Philippa Foot."

In response to the elderly woman's

request, you stop the trolley.

>Look at the joystick.

A familiar control device for your

trolley. You can steer to the east or

 246

west with the device, (by simply typing

"E" or "W" in this story) or use it to

start the vehicle (by pushing the stick)

or to stop (by pulling the joystick.)

The elderly woman gives you an odd look,

perhaps an expression of pity or concern,

and gets off the trolley. As you restart

the trolley and it gains speed in its

typical, brisk way, you notice that the

controls feel a little odd.

You test the brake and find that it

fails! However, a check of the steering

mechanism seems to suggest that it's

working.

Looking ahead, you are shocked to

discover that five people have wandered

onto the track ahead, where your runaway

vehicle is sure to hit them in a few

seconds. A glance at the track that

diverges to the west indicates that

things aren't much better in that

direction. There's a pedestrian on the

track there, too. In the next few

seconds, you're going to have to decide

whether to simply wait, thus letting the

car go straight, or steer west.

 247

>Honk the horn.

It seems that your signaling device has

failed, along with the trolley’s brakes.

You can still steer, though.

>Go west.

You find yourself on a stretch of track

just west of Medford Crossing. Your

runaway trolley has just rolled to a stop

after colliding with an innocent

bystander.

After the runaway trolley incident, you

take a desk job with the local transit

authority for a time. Today, three days

after the accident, you find yourself

approaching a footbridge as you make your

way home from work. The bridge crosses a

trolley track. You see that a very large

man is standing on the bridge, leaning

over a rather low railing.

As you near the bridge, you notice that

only one other person seems to be around.

She's a light-haired, bespectacled, older

woman, wearing a name tag issued by a

local philosophy conference. Apparently,

her name is Judith Jarvis Thomson. She

 248

seems a rather anxious to get across the

bridge and out of its vicinity, and she

soon disappears around a corner.

Bridge

A simple footbridge, spanning the trolley

tracks near Medford Crossing.

You can see a Big Man here.

>Look at the man.

An unusually large person, perhaps six

feet eight inches tall, weighing around

400 pounds. He is leaning precariously

over the railing of a footbridge, just

above a trolley track.

You soon realize why the big man is

leaning so awkwardly. He's observing yet

another runaway trolley scene. This time,

the out-of-control vehicle is headed

toward five unsuspecting workers who are

on its track.

It occurs to you that, if the big man

were to fall off the bridge, he would

land in front of the trolley and his bulk

would probably stop its progress. If you

were to push him, he would surely fall

 249

from the bridge.

>Wait.

The big man regains his balance, and the

two of you watch the sad events that

unfold below you.

*** The thought experiment has ended. ***

Would you like to RESTART, RESTORE a

saved game, QUIT or UNDO the last

command?

The Trolley Problems

 Our sample IF story follows two variations of a
famous thought experiment, originally proposed by the
British virtue ethicist Philippa Foot and much elaborated

 250

by the American philosopher Judith Jarvis Thomson. In
its original version, with the listener in the role of the
trolley driver, the problem leads a large majority of
respondents to choose to turn the runaway vehicle,
killing one innocent person rather than five. In the "Big
Man" variation, a similarly-large majority choose not to
sacrifice the one to save the many, usually because, in
order to save the five, the respondent would have to
actively and voluntarily murder the one. For many
listeners, the “Big Man” version is by far the more
disturbing of the two.

 How do these trolley problems apply to the student
writer of interactive fiction? In order to see the
connection, we should first consider the nature of an IF
authoring system and then look at the various “selves”
of a student author.

Inform 7

 An authoring system is a programming language
that writers use to create their interactive stories. In
most cases, at least during the last half decade,
especially in universities, that authoring system is often
a highly innovative tool called Inform 7.

 Inform 7 produces, as its output, an interactive story
that most speakers and readers of English (or any of
several other supported languages) can read. In that

 251

respect, Inform 7 is just like other IF authoring systems.
However, unlike other authoring systems, Inform 7
allows the writer to create his or her story in more or
less plain natural-language sentences, not in arcane
computer code.

 Suppose that a student wants to create a room for
use in an interactive fiction story. Using a conventional
authoring system, the writer might create source code
that looks like this:

Object fac_cafe "The Faculty Dining

Room"

 with description

 "This is a smaller version

 of the student cafeteria,

 containing the expected

 appointments for an eating

 space for teachers. A door on

 the east wall leads outside the

 building, where you're not

 supposed to be during the school

 day.",

 n_to café;

 With Inform 7, the source code would look more like
natural language:

 252

The Faculty Dining Room is south of the

Café. The description of the Faculty

Dining Room is "This is a smaller version

of the student cafeteria, containing the

expected appointments for an eating space

for teachers. A door on the east wall

leads outside the building, where you're

not supposed to be during the school

day."

 Because of its natural-language syntax, Inform 7 is
much easier for students to learn than conventional
programming languages. In addition, the "source text"
that the student writes to create his story can take the
form of a readable process-analysis essay, just the sort
of expository assignment that many university
instructors favor. And, less obviously, Inform 7 creates
an environment in which writing an interactive story is
quite closely analogous to reading one. For this reason,
writing a work of interactive fiction with Inform 7 can
actually help a novice to become a better reader of
electronic literature.

Self and the Student Writer

 For the purposes of this discussion, we need only a
rudimentary understanding of the “selves” of a student

 253

writer. Let’s call the actual writer the “first self.” Of
course, we might offer a more complex analysis of the
actual author and the ways in which she might think of
herself in an academic context, but, for now, let’s think
of the first self as an ordinary, individual person.

 In creating works of fiction, the real writer (or “first
self”) creates characters, or “second selves.” Some of
these selves may be very similar to the first self, and
others may be strikingly different. In the case of a
narrating character who seems similar to the actual
writer, readers will occasionally confuse the narrator
with the author.

 Works of interactive fiction feature a unique type of
character, the character whom the reader controls. This
very active individual is usually called the
“player/character.” In our “Trolley” story, the
player/character is a driver who runs into some severe
mechanical difficulties with his vehicle, moves into a
desk job, and eventually faces a difficult decision
concerning a big man on a bridge.

 The player/character, who is usually referred to as
“you” in an IF story, represents some unusual
challenges for a writer. Perhaps the most compelling of
these is that, in interactive fiction, the fundamental
thrust of the genre causes the reader to conflate herself
with the player/character. This uniquely tight

 254

identification of the reader with a character gives birth to
the “third self” of the IF author. This “third self” is the
reader. In interactive fiction, the reader does not merely
relate to the player/character. The reader “runs” the
player/character in an intensely intimate way and thus
takes on a sense of responsibility for what the character
does.

 Because of this extreme identification of the reader
with the player/character, the writer of an interactive
story must be thoughtful of the reader in a very unusual
way. The writer must place herself in the moral position
of the reader, as the reader plays the part of the
player/character. The writer must think of the reader as
a “third self.”

 In interactive fiction, the reader finds herself in a
position similar to that of the decision-maker in the
trolley problem. She has to make choices, choices
which, by the author's design, may be morally difficult
ones. In crafting these choices, an IF writer must exert
great care to be “fair” to the reader in ways that go
beyond the demands of clarity and coherence that other
writers must meet. Readers of interactive fiction have a
right to expect such consistent and caring treatment
from IF authors. Indeed, one of the foundational
documents of interactive literature is the Graham
Nelson’s “Bill of Player's Rights,” including the right to
“reasonable freedom of action” the right “not to depend

 255

too much on luck.”

 To a novice writer of interactive fiction, this need to
identify with and care for the reader as if the reader
were a “third self” is not at all obvious. In truth, it often
seems that new IF authors are trying to offend the
reader, as they struggle to come up with new twists on
old problems. For example, if a newby writer were to re-
create the “big man” version of our trolley story, she
might allow the player/character to push the giant off the
bridge, only to have his body collide with the trolley and
be propelled through the air, killing the bystanders.

 A similar instance, based on an actual student story,
involves a Space-Viking player/character who, along
with a companion named Uther, is invading a monastery
on a distant planet. In the interest of privacy, we’ll
withhold the student’s identity here and alter the story
quite a lot, even though the author has posted the piece
on the Web. Here, in essence, is how one scene goes.

You can see a platinum book, an iridium

candlestick, an old monk, a young priest

and an apprentice priestess here.

>Take the book (a likely choice by the

reader).

The pages of the book are useless to you,

 256

but the cover appears to be of great

value. You tear the pages from it, and

throw them to the floor. An unarmed druid

suddenly appears from behind the altar

and runs toward you. He is very angry,

and is yelling at you in a language you

don’t understand. You and Uther turn

continue your plundering, but the druid

starts to plead with you, perhaps for the

platinum cover.

You put the cover into your antigravity

sack. The priest tries to grab at the

bag, and as he does, Uther activates his

lumensabre and slices off the priest's

hand. The priest screams and falls to the

floor.

 Here, the writer fails to allow his reader “reasonable
freedom of action,” in that, if the player/character takes
the somewhat innocent step of picking up the book, he
causes the priest to suffer great harm. Similarly, if the
player/character chooses to try to protect the priestess
by picking her up to carry her away from the carnage in
the monastery, the story declares that player/character
has impressed her into sexual slavery.

 257

Three Problems

 Why would an IF writer treat the reader so shabbily?
There are at least three reasons. The first centers on
the novice writer's inexperience in reading interactive
fiction. The second involves the newby's difficulty in
creating, or “implementing” the reader's options. And the
third hinges on a misunderstanding of an accomplished
IF writer's intentions.

Getting to Know the Third Self

 First, the novice writer probably has little experience
in reading interactive fiction, and the experience she
does have is probably with more accomplished works of
IF. She, in all likelihood, has never experienced the
dismay of an interactor who issues a simple directive
that results in an unpredictably complex result. In the
case of a the new writer, the “first self” may not know
very much about what it’s like to be the “third self.”

Implementation: “Hard Writing” in Interactive
Fiction

 A second reason for mistreatment of the third self is
a special case of the familiar adage, “easy writing
makes hard reading.” In order to give the interactor
“reasonable freedom of action” in our Viking story, the
writer would have to allow the reader to consider taking

 258

the book, and, whether he takes the tome or not, to
make other decisions about how to deal with the
pleading priest and the other characters. But giving the
reader this sort of freedom would require far more
difficult thinking and writing than what the author of the
story has actually done. Instead of providing a single
response for “take the book,” the author would have to
consider a series of questions and provide programming
to account for each of them. These questions would
include, at least:

“What happens if the player decides to act in a way
inconsistent with Viking marauding, perhaps by not
taking the book?”
“What happens if the player/character takes the book
but doesn't want to let his friend harm the priest?”
“What happens if the player/character wants to kill the
priest, and/or all the other helpless victims?”
“What happens if the player decides to wait for a turn or
two, doing nothing at all in the midst of all this chaos?”
“If the player/character's companion attacks the
unarmed priest, will the player/character take action
against his friend?”
“If the scene continues for several turns, what will the
young priest, the old friar, and the young nun do?”

 The writer, then, has a great deal of programming,
or “implementing” to do, if she is to treat the reader
thoughtfully. In truth, an experienced IF writer might

 259

choose a more radical solution here, concluding,
perhaps, that a Viking warrior really has too many
options in this scene. The author might decide to
introduce fewer characters, or perhaps to use a different
player/character, such as a servant of the Viking fighter,
whose options would be fewer and so might require
more nuanced problem-solving.

Misunderstanding the Parser

 A third reason for an inexperienced author's
inconsiderate treatment of the reader is a false
assumption about the relationship between the reader
and the writer. Interactive fiction, like video gaming and
other forms of interactive storytelling, is an inherently
challenging genre. Because, in a typical interactive
story, a reader experiences a certain level of difficulty
and frustration, the interactor may conclude that the
author is deliberately taunting him, even when the writer
is skillfully easing the way through the tale.

 Some of the novice reader's frustration will usually
involve the inability of the story's parser to interpret
some of his input. For example, if the reader types, “I
want to take the book,” rather than “take the book,” an
IF story will typically respond, not very helpfully, “I only
understood you as far as wanting to take inventory.”
This odd failure to communicate results from the
limitations of the story's parser and from the reader's

 260

misunderstanding of the kind of sentence she should be
using. In order to avoid this sort of problem, most IF
writers provide some instruction for new readers,
especially on the sentences that the story will likely
understand. However, many (perhaps most) new
readers assume, wrongly, that an odd response from
the parser results from a deliberate choice of the author.
As IF author Andrew Plotkin has pointed out, they think
that the writer has created this difficulty as a particularly
annoying problem for the reader to solve.

 An IF novice, then, will often conclude that there
exists a natural enmity between the reader and writer in
interactive fiction. Acting on this belief, the student writer
may feel little inclination to accord the reader the status
of a "third self." In fact, the newby writer often shows
little or no respect for the rights and wishes of the
interactor and may actually taunt the reader at times.
One student writer had his story respond to the reader's
forgetting his car keys with the quip, "This isn't Grand
Theft Auto!"

Overcoming the Problems

 Of course, with a modicum of good instruction and
some constructive practice, students can substantially
overcome these "third self" problems and create
enjoyable IF stories. For students who are having
difficulty because they lack experience with the IF

 261

genre, the obvious solution is for them to read more
interactive fiction. In particular, they may benefit from
some exposure to less accomplished stories, of which
many appear on the Web. Christopher Fee of
Gettysburg College offers a large collection of student-
written stories, some quite sophisticated and others less
skillful. His website is at
http://public.gettysburg.edu/~cfee/courses/English40120
01/topic3.htm#Playing

 Frequently, the reactions of other students can help,
too, especially when students are having trouble with
“hard writing” problems related to implementing clear
and fair options for the reader. Real readers, even
novice readers, can often spot options that really should
work for the interactor, but just don't. And even the most
skillful IF writers invariably value the suggestions of
thorough readers, or “beta testers,” in identifying points
for revision.

 Responding to the needs of real readers can also
help new IF writers to see that more experienced
authors really are trying to create stories for readers to
enjoy, despite the challenges inherent in the medium.
As little as an hour or so of massaging the parser to
make it more reader-friendly will convinces almost any
student writer that her relationship with the reader really
should be a friendly one.

http://public.gettysburg.edu/~cfee/courses/English4012001/topic3.htm#Playing
http://public.gettysburg.edu/~cfee/courses/English4012001/topic3.htm#Playing

 262

Back to the Conventional Essay

 Writing interactive fiction, then, can help, or perhaps
even require, student writers to adopt an unusually
active and thoughtful stance toward their readers. And,
with a little encouragement, such student writers of IF
can use their newly-minted "third self" sensitivity in
conventional academic writing, to the benefit of all of
their readers.

 263

Chapter 11 – Recommended Stories

 New works of interactive fiction appear almost
weekly, and many are suitable for use with students
aged eleven through eighteen. In this chapter, we'll offer

a ”Top Seventy” list and subsequent chapters will
present information on teaching with six particular
stories, Arthur, The Firebird, Photopia, Winter
Wonderland, The Enterprise Incidents, and Lost Pig.

 As you might expect, there are many more stories
that are good for use with older students -- college
undergraduates, for example. Among these are Violet
by Jeremy Freese (2008), Anchorhead by Micheal
Gentry (1998), The King of Threads and Patches by
Jimmy Maher (2009), Blue Lacuna by Aaron Reed
2008), Coloratura by Lynnea Glasser (2013),
Counterfeit Monkey by Emily short, and Hadean Lands
by Andrew Plotkin (2014).

 The Interactive Fiction Database offers readers'
ratings of hundreds of interactive stories. Most of these
are quite reliable, though you should be skeptical of
works that have high average ratings, based on a very

 264

small number of responses.

The Top Seventy (Or So) Works of Interactive Fiction
(In One Person's Opinion)

For Use In Middle (Students Aged 10-13) and High
Schools (Students Aged 14-18)

Stories that are available in the IF Archive are also at
the Interactive Fiction Database (ifdb.tads.org), where

online versions can usually be found. Many of the
stories involve ancillary materials that can be obtained
by Googling the stories' websites.

1. Arthur: the Quest for Excalibur by Bob Bates (1989),
a well-plotted version of the story of King Arthur as a
boy, excellent for middle school (Available
in Masterpieces of Infocom, and other Infocom
collections, often Offered at Ebay and Amazon)

2. Lost Pig by Admiral Jota (2007), hilarious tale of
Grunk the orc, fun for readers of amost all ages. Winner

http://if1.home.comcast.net/kid_obta.htm
http://if1.home.comcast.net/kid_obta.htm
http://if1.home.comcast.net/kid_obta.htm

 265

of the 2007 Fall IF Competition. (Available at the
Interactive Fiction Archive and the Interactive Fiction
Database.

3. Wishbringer by Brian Moriatry, (1985) a gentle
fantasy-adventure, excellent for middle school
(Available in Masterpieces of Infocom)

4. The Firebird by Bonnie Montgomery (1998), a comic
retelling of the Russian folk tale, excellent for middle
school (Available at the Interactive Fiction
Archive, http://www.ifarchive.org. The archive is well
catalogued at the Interactive Fiction Database
(http://ifdb.tads.org)

5. Winter Wonderland by Laura Knauth (1999), a
finely-crafted winter solstice story, excellent for middle
school (Available at the Interactive Fiction Archive,
http://www.ifarchive.org)

6. Mrs. Pepper’s Nasty Secret by Eric Eve and Jim
Aiken (2008), a clever and lighthearted puzzle-fest,
good for beginners. (Available
at http://ifdb.tads.org/viewgame?id=dcvk7bgbqeb0a71s)

http://www.ifarchive.org/
http://ifdb.tads.org/
http://parchment.googlecode.com/svn/trunk/parchment.html?story=http://parchment.toolness.com/if-archive/games/zcode/winter.z5.js
http://www.ifarchive.org/
http://ifdb.tads.org/viewgame?id=dcvk7bgbqeb0a71s

 266

7. A Bear's Night Out by David Dyte (1997), a funny
story of a teddy bear who comes to life (Available at the
Interactive Fiction Archive, http://www.ifarchive.org)

8. The Earth and Sky Trilogy--Earth and Sky by Paul
O'Brian (2001), the first of three comic superhero stories
(Available at the Interactive Fiction
Archive, http://www.ifarchive.org)

9. The Earth and Sky Trilogy--Another Earth, Another
Sky by Paul O'Brian (2002), the second of three comic
superhero stories (Available at the Interactive Fiction
Archive, http://www.ifarchive.org)

10. The Earth and Sky Trilogy--Luminous Horizon by
Paul O'Brian (2004), the third of three comic superhero

stories (Available at the Interactive Fiction Archive,
http://www.ifarchive.org)

http://parchment.googlecode.com/svn/trunk/parchment.html?story=http://parchment.toolness.com/if-archive/games/zcode/bear.z5.js
http://parchment.googlecode.com/svn/trunk/parchment.html?story=http://parchment.toolness.com/if-archive/games/zcode/bear.z5.js
http://www.ifarchive.org/
http://www.ifarchive.org/
http://www.ifarchive.org/
http://www.ifarchive.org/

 267

11. Photopia by Adam Cadre (With Censoring of
Opening Scene of Some Versions, 1998), a challenging,
beautiful, and very sad story of a middle school girl
(Available at the Interactive Fiction
Archive, http://www.ifarchive.org)

12. The Matter of the Monster by Andrew Plotkin (2011),
an inventive variation on the "Choose Your Own
Adventure" type of story. Quite brief and very enjoyable.

13. Bronze by Emily Short (2006), a Gothic retelling of
Beauty and the Beast, with some references to sexuality
and suicide, good for mature high schoolers. (Available

at the Interactive Fiction Archive,
http://www.ifarchive.org. A slightly-edited version for
younger readers is at http://bdesilets.com/if/Bronze.z8.

14. Hoist Sail for the Heliopause and Home by Andrew
Plotkin (2010), a graceful space-exploration fantasy.
Best for older students who have some literary-analysis

http://parchment.googlecode.com/svn/trunk/parchment.html?story=http://parchment.toolness.com/if-archive/games/zcode/photopia.z5.js
http://www.ifarchive.org/
http://eblong.com/zarf/zweb/matter/
http://parchment.googlecode.com/svn/trunk/parchment.html?story=http://parchment.toolness.com/if-archive/games/zcode/Bronze.zblorb.js
http://parchment.googlecode.com/svn/trunk/parchment.html?story=http://parchment.toolness.com/if-archive/games/zcode/Bronze.zblorb.js

 268

skills. (Available at the Interactive Fiction Archive and
the Interactive Fiction Database.)

15. Jack Toresal and the Secret Letter by Michael
Gentry and David Cornelson, (2009) an exciting
interactive novel with a suspenseful plot and wonderfully
interactive characers (Available for purchase
at http://textfyre.itch.io/jack-toresal-and-the-secret-letter)

16. Robin & Orchid by Ryan Veeder and Emily
Boegheim (2013), comic story about high school
students looking for a ghost in a Methodist church.
Some readers may find mild irreverence here and there.
 (Available at the Interactive Fiction
Archive, http://www.ifarchive.org)

17. Mother Loose by Irene Callaci (1998), an amusing
retelling of some classic fairy tales, excellent for middle
school (Available at the Interactive Fiction
Archive, http://www.ifarchive.org)

18. Bonehead by Sean M. Shore (2011), the mostly-true
story of Fred Merkle, who made one of major league
baseball's most famous mistakes. Part of the 2011
Spring Thing Competition. (Available at the Interactive
Fiction Archive, http://www.ifarchive.org)

19. Aoteoroa by Matt Wingall (2010), a lively tale of the
modern world--with dinosaurs! (Available at the
Interactive Fiction Archive, http://www.ifarchive.org)

20. Taco Fiction by Ryan Veeder (2011), a young man

http://www.rcveeder.net/if/robinorchid/play.html
http://www.ifarchive.org/
http://parchment.googlecode.com/svn/trunk/parchment.html?story=http://parchment.toolness.com/if-archive/games/zcode/loose.z5.js
http://www.ifarchive.org/
http://iplayif.com/?story=http://if1.home.comcast.net/Bonehead.gblorb
http://www.ifarchive.org/
http://www.wigdahl.net/Aotearoa/
http://www.ifarchive.org/
http://www.ifarchive.org/

 269

plans on making a big mistake, but thinks better of it.
Recommended for older kids, sixteen and up. (Available
at the Interactive Fiction
Archive, http://www.ifarchive.org)

21. History Repeating by Mark and Renee Choba
(2005), a time travel story about a man who neglected
an important assignment in his high school history class
(Available at the Interactive Fiction Archive,
http://www.ifarchive.org)

22. The Warbler's Nest by Jason MacIntosh (2010), a
brief, truly creepy, though non-graphic, horror tale. Best
for older students. (Available at the IF Archive and the IF
Database)

23. Lost New York by Neil DeMause (1996), a detailed,
well-researched time-travel story about the Big Apple;
excellent for more mature middle schoolers and for high
schoolers (Available at the Interactive Fiction Archive,
http://www.ifarchive.org)

24. Suspect by Dave Lebling (1984), a rather
challenging murder mystery, set at a high-society
costume party (Available in Masterpieces of Infocom)

http://www.ifarchive.org/
http://www.ifarchive.org/
http://www.ifarchive.org/

 270

25. Moonmist by Jim Lawrence and Stu Gally (1986), a
mystery for kids, set in a Cornish castle, good for middle
school (Available in Masterpieces of Infocom)

26. Zork I by Marc Blank and Dave Lebling (1980), a
fantasy treasure hunt (Available
at http://www.csd.uwo.ca/Infocom/download.html)

27. The One That Got Away by Leon Lin (1995), a brief,
funny story about fishing (Available at the Interactive
Fiction Archive, http://www.ifarchive.org)

28. Glowgrass by Nate Cull (1997), a sad but graceful
science fiction story, set in a post apocalyptic future
(Available at the Interactive Fiction
Archive, http://www.ifarchive.org)

29. Small World by Andrew Pontius (1996), a fantasy
about a boy who sets a mixed up world right (Available
at the Interactive Fiction
Archive, http://www.ifarchive.org)

http://www.csd.uwo.ca/Infocom/download.html
http://www.ifarchive.org/
http://www.ifarchive.org/
http://www.ifarchive.org/

 271

30. You've Got a Stew Going by Ryan Veeder (2011),
funny tale with a rat progagonist. (Available at the IF
Archive and at the IF Database.)

31. The Magic Toyshop by Gareth Rees (1995), an
imaginative puzzle fest (Available at the Interactive
Fiction Archive, http://www.ifarchive.org)

32. Mingsheng by Deane Saunders (2004), a
sometimes mystical, always gentle story involving
martial arts (Available at the Interactive Fiction Archive,
http://www.ifarchive.org)

33. Dragon Adventure by William Stott (2003), an
adventure story for children aged nine and up (Available
at the Interactive Fiction Archive,
http://www.ifarchive.org)

34. It by Emily Boegheim (2011). Read this appealing
story and learn to play “sardines.” (Available at the IF
Archive and at the IF Database.)

35. The Great Xavio by Reese Warner (2004), a comic

http://parchment.googlecode.com/svn/trunk/parchment.html?story=http://parchment.toolness.com/if-archive/games/competition95/magic-toyshop.z5.js
http://www.ifarchive.org/
http://www.ifarchive.org/
http://www.ifarchive.org/
http://parchment.googlecode.com/svn/trunk/parchment.html?story=http://parchment.toolness.com/if-archive/games/zcode/GreatXavio.z5.js

 272

detective story (Available at the Interactive Fiction
Archive, http://www.ifarchive.org)

36. The Dreamhold by Andrew Plotkin (2004), a difficult
fantasy story with help for beginners (Available at the
Interactive Fiction Archive, http://www.ifarchive.org)

37. The Lost Islands of Alabaz by Michael Gentry
(2011), an action-packed fantasy tale. Winner of the
2011 Spring Thing Competition. (Available at the
Interactive Fiction Archive, http://www.ifarchive.org)

38. The Shadow in the Cathedral by Ian Finley and
John Ingold (2009), a fantasy puzzle fest with a
compelling plot (Available for purchase
at http://textfyre.itch.io/the-shadow-in-the-cathedral)

39. The Witness by Stu Galley (1984), a mock-noir
mystery, good for high school (Available in Masterpieces
of Infocom)

40. The Hitchhiker's Guide to the Galaxy by Steve
Meretzsky and Douglas Adams (1984), a sometimes-
silly interactive story based loosely on a famous novel

http://www.ifarchive.org/
http://parchment.googlecode.com/svn/trunk/parchment.html?story=http://parchment.toolness.com/if-archive/games/zcode/dreamhold.z8.js
http://www.ifarchive.org/
http://www.edromia.com/alabaz/play.html
http://www.edromia.com/alabaz/play.html
http://www.ifarchive.org/

 273

(Available
at http://www.bbc.co.uk/radio4/hitchhikers/game.shtml)

41. Trinity by Brian Moriarty (1986), brilliant but difficult
fantasy based on the origin of nuclear weaponry
(Available in Masterpieces of Infocom)

42. A Mind Forever Voyaging by Steve Meretzsky
(1985), soaringly literary but difficult tale of a dangerous
future, good for high school (Available in Masterpieces
of Infocom)

43. Seastalker by Stu Galley and Jim Lawrence (1984),
adventure in a futuristic submarine, good for middle
school (Available in Masterpieces of Infocom)

44. The Orion Agenda by Ryan Weisenberger (2004), a
Star-Trek-like story of a distant planet (Available at the
Interactive Fiction Archive, http://www.ifarchive.org)

45. Ballyhoo by Jeff O’Neill (1985), mystery-adventure,
set in a circus (Available in Masterpieces of Infocom)

46. At the Bottom of the Garden by Adam Biltcliff
(2000), a comic tale of an invasion by miniature dragons

http://www.bbc.co.uk/radio4/hitchhikers/game.shtml
http://parchment.googlecode.com/svn/trunk/parchment.html?story=http://parchment.toolness.com/if-archive/games/zcode/orion.z5.js
http://www.ifarchive.org/

 274

(Available at the Interactive Fiction
Archive, http://www.ifarchive.org)

47. Arrival by Stephen Granade (1998), funny sendup
of low-budget science fiction movies (Available at the
Interactive Fiction Archive, http://www.ifarchive.org)

48. Plantefall by Steve Meretzsky (1983), a comic
science fiction story with some tough puzzles, good for
high school (Available in Masterpieces of Infocom)

http://www.ifarchive.org/
http://www.ifarchive.org/

 275

49. Savoir Faire by Emily Short (2002), a beautifully
written, difficult puzzle fest, with a romantic twist,
excellent for high school (Available at the Interactive
Fiction Archive, http://www.ifarchive.org)

50. Zork III by Marc Blank and Dave Lebling, (1982) a
fantasy story with interesting character interaction.
(Available
at http://www.csd.uwo.ca/Infocom/games.html)

51. Christminster by Gareth Rees (1995), a difficult,
detailed, finely crafted tale of alchemy and intrigue, set
at a British university (Available at the Interactive Fiction
Archive, http://www.ifarchive.org)

52. Plundered Hearts by Amy Briggs (1987), a spoof or
romance novels, with some mild sexual references,
good for mature high-school students (Available
in Masterpieces of Infocom)

53. Sherlock: the Riddle of the Crown Jewels by Bob
Bates (1987), a complex mystery with a realistic map of
Victorian London (Available in Masterpieces of Infocom)

54. MythTale by Temari Seikaiha (2002), a clever
blending of several Greek myths (Available at the
Interactive Fiction Archive, http://www.ifarchive.org)

http://parchment.googlecode.com/svn/trunk/parchment.html?story=http://parchment.toolness.com/if-archive/games/zcode/Savoir-Faire.zblorb.js
http://www.ifarchive.org/
http://www.csd.uwo.ca/Infocom/games.html
http://parchment.googlecode.com/svn/trunk/parchment.html?story=http://parchment.toolness.com/if-archive/games/zcode/minster.z5.js
http://www.ifarchive.org/
http://www.ifarchive.org/

 276

55. Six by Wade Clarke (2011), playful story with a six-
year-old protagonist. Second Place in the 2011 Fall IF
Competition. (Available at the IF Archive and at the IF
Database)

56. The Colour Pink by Robert Street (2005), a space-
exploration story with some clever twists, a mild sexual
reference or two, sometimes simplistic prose styles,
some avoidable violence (Available at the Interactive
Fiction Archive, http://www.ifarchive.org)

57. Galatea by Emily Short (2000), lovely and
challenging retelling of the Pygmalion myth, good for
high school (Available at the Interactive Fiction
Archive, http://www.ifarchive.org)

58. Curses! by Graham Nelson (1993), a difficult, witty,
atmospheric tale of a haunted house (Available at the
Interactive Fiction Archive, http://www.ifarchive.org)

http://www.ifarchive.org/
http://parchment.googlecode.com/svn/trunk/parchment.html?story=http://parchment.toolness.com/if-archive/games/zcode/Galatea.zblorb.js
http://www.ifarchive.org/
http://parchment.googlecode.com/svn/trunk/parchment.html?story=http://parchment.toolness.com/if-archive/games/zcode/curses.z5.js
http://www.ifarchive.org/

 277

59. 1893: A World's Fair Mystery, by Peter Napstad
(2002), a remarkably detailed story, set at America's
most important world's fair, a bit gory at times, with one
mild sexual reference (Available at the IF Database,
http://ifdb.tads.org)

60. Wetlands by Clara Raubertas (2011), a rather
difficult fantasy story with lots of atmosphere. Part of the
2011 Spring Thing Competition. (Available at the
Interactive Fiction Archive, http://www.ifarchive.org)

61. Worlds Apart by Suzanne Britton (1999), an
extraordinarily rich fantasy story for skilled readers
(Available at the Interactive Fiction
Archive, http://www.ifarchive.org)

62. The Meteor, the Stone, and a Long Glass of
Sherbet by Graham Nelson (1993), a funny and
cohesive fantasy tale (Available at the Interactive Fiction
Archive, http://www.ifarchive.org)

63. Zork Zero by Steve Meretzsky (1988), a very funny
fantasy adventure, good for high school (Available
in Masterpiece of Infocom)

http://iplayif.com/?story=http://if1.home.comcast.net/Wetlands.gblorb
http://www.ifarchive.org/
http://www.ifarchive.org/
http://parchment.googlecode.com/svn/trunk/parchment.html?story=http://parchment.toolness.com/if-archive/games/zcode/sherbet.z5.js
http://parchment.googlecode.com/svn/trunk/parchment.html?story=http://parchment.toolness.com/if-archive/games/zcode/sherbet.z5.js
http://www.ifarchive.org/

 278

64. Spider and Web by Andrew Plotkin (1998), a spy
story with an unusual plot structure and theme, ideal for
skilled readers. Often appears at the top of all-time best
IF lists. (Available at the Interactive Fiction
Archive, http://www.ifarchive.org)

65. Moon-Shaped by Jason Ermer (2006), a
compelling, somewhat Gothic fairy tale. Though sad
and intense, this story is accessible to some
teenagers. (Available at the Interactive Fiction
Archive, http://www.ifarchive.org)

66. Once and Future by Kevin Wilson (1998), a time-
travel adventure that combines Arthurian legends and
the Vietnam War. For mature readers (Available at the
Interactive Fiction Archive, http://www.ifarchive.org)

67. Zork II by Marc Blank and Dave Lebling (1981), a
challenging fantasy treasure hunt with an amusing
wizard character (Available
at http://www.csd.uwo.ca/Infocom/games.html)

68. Enchanter by Marc Blank and Dave Lebling (1983),
a challenging tale of spells and magic (Available

http://parchment.googlecode.com/svn/trunk/parchment.html?story=http://parchment.toolness.com/if-archive/games/zcode/Tangle.z5.js
http://www.ifarchive.org/
http://www.ifarchive.org/
http://www.ifarchive.org/
http://www.csd.uwo.ca/Infocom/games.html

 279

in Masterpiece of Infocom)

69. Floatpoint by Emily Short (2006), an artistically-
crafted story of interplanetary diplomacy. Themes of
genetic engineering of sentient life make this story
better for older students. (Available at the Interactive
Fiction Archive, http://www.ifarchive.org)

70. Beyond Zork by Brian Moriaty (1987), a detailed
and difficult fantasy tale, with some options for shaping
the player-character, good for high school (Available
in Masterpiece of Infocom)

71. The Light: Shelby's Addendum, by Colm McCarthy
(1995), a complex science fiction tale with a carefully
crafted map and difficult problems (Available at the
Interactive Fiction Archive, http://www.ifarchive.org)

72. Nord and Bert Couldn't Make Head or Tail of It by

http://www.ifarchive.org/
http://www.ifarchive.org/

 280

Jeff O'Neil (1987), a hilarious collection of short stories
based on word play (Available in Masterpieces of
Infocom)

73. The Beetmonger's Journal by Scott Sharkey (2001),
well-written, enjoyable tale of archeology (Available at
the Interactive Fiction Archive, http://www.ifarchive.org)

74. Tales of the Traveling Swordsman by Mike Snyder
(2006), a swashbuckling adventure with a twist at the
end (Available at the Interactive Fiction
Archive, http://www.ifarchive.org)

75. Metamorphoses by Emily Short (2000), a
challenging story of magical transformations (Available
at the Interactive Fiction
Archive, http://www.ifarchive.org)

76. Deadline by Marc Blank (1982), a really hard
mystery story with good character interaction (Available
in Masterpiece of Infocom)

77. Jacqueline, Jungle Queen! by Steph Cherrywell
(2014), an amusing story with some relatively easy
puzzles. Includes a short, bawdy poem that can be
avoided. Third Place Winner in the 2014 Fall IF
Competition. (Available at

http://www.ifarchive.org/
http://www.ifarchive.org/
http://parchment.googlecode.com/svn/trunk/parchment.html?story=http://parchment.toolness.com/if-archive/games/zcode/metamorp.z5.js
http://www.ifarchive.org/

 281

http://ifdb.tads.org/viewgame?id=h63kzv5acq9s7dak)

 282

Chapter 12 – An Interactive Classic from the
Commercial Era

Arthur: the Quest for Excalibur

Advantages, Maps, and Walkthrough

 Arthur, the Quest for Excalibur by Bob Bates
(Infocom, 1989) offers special opportunities for middle
school teachers, in addition to those that all good
interactive fiction provides. To begin with, it dovetails
well with traditional middle school curriculum, which
often includes the Arthurian Legends. Also, unlike most
versions of the Arthur stories, it offers a look at England
in the fifth century AD, the period in which the historical
Arthur, if there was one, actually lived; and a set of
notes that contrasts this period with the thirteenth and
fourteenth-century settings of most Arthurian tales.

 Though Arthur does provide on-screen mapping,
teachers may find more extensive maps of stories’
settings useful for their own planning, or even for use
with students. Of course, distributing maps to students
before they try a story will give away the solutions to
some problems, but, the maps, as presented here, spoil

 283

very little of the fun and obviate a good deal of
frustration.

 You can find a walkthrough for Arthur at
http://www.gamefaqs.com/pc/564481-arthur-the-quest-
for-excalibur/faqs/1630.

Maps for Arthur

http://www.gamefaqs.com/pc/564481-arthur-the-quest-for-excalibur/faqs/1630
http://www.gamefaqs.com/pc/564481-arthur-the-quest-for-excalibur/faqs/1630

 284

 285

 286

Formulating Problems in Arthur

 Like other works of IF, Arthur offers some very rich
opportunities for students to represent problems in a
variety of ways, as they work toward solutions. Usually,
my own classes maintained lists of problems and of
restatements of problems, as they read works of IF.
These lists helped them to keep track of the multiple
problems that they were working on, helped them solve
the problems, and, perhaps most important, gave them
a tool for looking back at, and thinking about, their
problem-solving techniques.

 Let’s take a look at some formulations and
reformulations of problems that students typically create
as they read Arthur.

 Very early in the story, as the reader tries to start

 287

exploring, he or she encounters a problem in dealing
with a curfew imposed by the evil King Lot. Here is a
typical series of formulations of this problem:

 At first, students may ask, “How can I get out of
the churchyard area?”

 Then, when the curfew-enforcing soldiers
interfere, the problem may become, especially
for relatively naive students, “How can I
overcome the soldiers?”

 Soon, it becomes clear that an unarmed boy
can’t defeat the soldiers, and so students
usually ask, “Where can I hide from the
soldiers?”

 Probably the most likely hiding place is the only
nearby building, where the problem becomes,
“In the church, where can I hide from the
soldiers?”

 But there’s no good hiding place in the church,
and this realization usually brings students to a
more or less final formulation of this problem,
“In the churchyard, where can I hide from the
soldiers?” This question leads students to have
Arthur hide, successfully, behind one of the
gravestones.

 288

 Later, as he or she continues to explore, the reader
encounters a deadly and treacherous bog, but a person
who knows the way through turns out to be close at
hand. Here is a series of reformulations of this problem.

 The problem may begin as, “How can I get
through the treacherous peat bog?”

 When the readers realize that the bog is a kind
of maze, in which one false step can cause
disaster, they may formulate the problem in a
way that takes into account the need for some
sort of map: “How can I get directions for
getting through the bog?”

 Once they know that they need directions,
students usually ask, “Where can I find
someone who might know his or her way
through the bog?”

 By the time they get to the bog, students have
usually found an unconscious character who
apparently lives near the swamp, and so they
ask, “How can I awaken the peasant?”

 But, in order to awaken the unconscious man,
the reader must figure out, “What’s wrong with
the peasant?”

 289

 Some hints in the description of the
unconscious man’s dwelling often lead
students to ask, “What’s wrong with the
peasant’s cottage?”

 And, since the cottage is described as very
cold, the problem may become, “How can I
warm up the cottage?”

 The cottage does have a smoldering fire, and
so students may ask, “Where can I get fuel for
the peasant’s fire?”

 If they have learned what peat is, the readers
may now change the problem to, “How can I
get some dry peat?”

 Students find that, though dry peat is easy to
find at the edge of the bog, it’s very hard to dig
it out. As a result, they soon ask, “What sort of
tool would be good for digging up peat?”

 Outside the peasant’s cottage, the students
have already found an object with an unfamiliar
name, and so they may inquire, “What is a
slean?”

 Then, they may ask, “How can I find out what a
slean is?” If they are catching on to the old

 290

interactive fiction rule, “Examine everything,”
they will quickly solve this problem.

 Once the cottage is warmed up, the peasant
regains consciousness and reveals that he
does, indeed, work in the peat bog, but it’s
clear that he is suffering from a leg injury. As a
result, student will often ask, “How can I help
the peasant further?” though this question may
not seem directly related to getting through the
bog. It turns out that Arthur can help the man
by giving him his crutch, which has been left
outside the cottage.

 Once Arthur is in the peasant’s good graces,
the students may ask, “How can I find out what
the peasant knows about the bog?” When they
ask the peasant about the bog, he gives them
directions to get through it.

Supplementary Materials for Arthur

 291

 Arthur includes maps and hints, which are
incorporated into the computer program itself. However,
like other Infocom stories, it requires additional
supplementary materials, which, originally, came with
the story in hard-copy form. Today, you can find these
materials at the website called “The Infocom
Documentation Project,” which resides at
http://infodoc.plover.net. The manual for Arthur, which
you'll find at the Documentation Project, offers some
important poetic materials, including a poem in which
the narrator is Merlin, who appears briefly in the story.
Another bit of verse, which appears at the beginning of
a Book of Hours, praises King Lot, the villain of the tale.
Each poem contains information that the reader needs
in order to solve a particular problem in the narrative.

http://infodoc.plover.net/

 292

Chapter 13 – An Interactive Classic From the
Modern Era: The Firebird

 1998 was a banner year for interactive fiction,
especially notable for three extraordinary works for
adults, Spider and Web by Andrew Plotkin, Once and
Future by Kevin Wilson, and Photopia by Adam Cadre.
Plotkin had already established himself as one of the
most brilliant of contemporary IF writers, but, with
Spider and Web, he produced a story that many readers
found more accessible than his earlier works, without
sacrificing the complexity of his other stories. Wilson’s
interactive novel, the first major commercial work of
text-based IF in many years, told a richly detailed story,
based on a compelling synthesis of the Arthurian
legends and the Vietnam War. And Photopia won a
major interactive fiction competition, pushing the notion
of “puzzle-free” interactive fiction to a new level, and
deeply moving practically everyone who read it.

 But, fortunately for kids, the good news didn’t stop
there. Bonnie Montogmery’s The Firebird, a great story

 293

for young and old, appeared in the same year.

 The Firebird retells a famous Russian folk tale – the
same tale that Stravinski used in his
ballet – in an adventurous and often hilarious way. It
offers puzzles that are fair, enjoyable, and not too
difficult; and it gives the reader several possible ways to
a favorable ending. In addition, it develops some
memorable characters, especially the Firebird herself;
raises interesting questions about the roles of women in
fairy tales; and, perhaps, broadens our cultural horizons
a bit.

 You can download The Firebird and learn about
running it on your local computer at the Interactive
Fiction Database. You can learn more about
downloading files and using interpreters in another
chapter in this book, the chapter called “Acquiring
Interactive Fiction.”

Walkthrough for The Firebird

Walkthrough by Brendan Desilets, with help from
Bonnie Montgomery, 1999

The Firebird by Bonnie Montgomery combines skillful
storytelling, colorful characters, and rollicking humor to
create a truly enjoyable work of interactive fiction. The
story offers lots of entertaining problems, none of them

http://ifdb.tads.org/viewgame?id=d9h1r3d920ap8ajf
http://ifdb.tads.org/viewgame?id=d9h1r3d920ap8ajf
http://if1.home.comcast.net/~if1/kid_obta.htm
http://if1.home.comcast.net/~if1/kid_obta.htm

 294

especially difficult to solve, though, occasionally, for lack
of a synonym or some such nicety, the reader may
become stuck. That's where this walkthrough, which is
constructed in such a way as to discourage its own use,
comes in. For those who prefer a "bare bones" solution,
there's such a beast at the end of this document. Many
of the Firebird puzzles have multiple solutions and
almost all are relatively easy.

Here are some simple hints for dealing with parser and
synonym problems in the story. For many readers,
these may be all the help that's needed.

When Ivan is trying to move some earth, the one-word
command "DIG" may work better than other
expressions. Similarly, the single word "ENTER"
is sometimes better than more complex formulations.
The key words in communicating with the allergist are
"STING," or "TREATMENT," or
"INJECTION," or "SHOT," or "MEDICINE."

The user's input appears in upper case letters
throughout this walkthrough.

As young Prince Ivan, in this retelling of the famous
Russian folk tale, you begin in a forest, hunting. Let's
start by trying to get a broader view of the forest by
typing U (for "up"). Bump. We didn't get very high, but

 295

we did scare up some game, a flicker. PUT ARROW IN
BOW.

Whenever the quarry tries to escape, FOLLOW BIRD.
AIM ARROW AT BIRD. SHOOT BIRD. TAKE BIRD.
(This would be a good time to abandon this
walkthrough and explore until you need more help, if
you ever do.)

Now GO SOUTH and SOUTH again. (You can
abbreviate “So south” with the single letter “s.

GIVE BIRD TO CATERER. There's a lovely and
unfamiliar young woman here. LOOK AT WENCH.
TAKE MASK. LOOK AT MASK. LOOK AT BUSBOY.
TAKE ALL.

It looks as though we're finished here for now. Let's
explore more of the forest. N, N, E, E. Here's a baba
yaga, or witch. That bag she has looks interesting.
DRINK COFFEE. PUT CUP IN BAG.

That may be a useful transformation. Let's try some
others. PUT PLATE IN BAG. EAT SANDWICH. PUT
PLATE IN BAG. PUT FORK IN BAG. PUT KNIFE IN
BAG. PUT NAPKIN IN BAG.

Time for a bit more exploration. W, W, N, N, N, N. How
can we trick those adoring groupies, who'll destroy our

 296

allergy-plagued skin with their lipstick? (This is another
good time to put the walkthrough aside.)

(Spoiler Space)

WEAR MASK. N, N. Now we want to get the allergist to
treat us, but his command of synonyms is somewhat
limited, and we have to phrase our request with
precision. ASK ALLERGIST ABOUT STING.
ALLERGIST, GIVE STING. ME.

LOOK AT MASSEUR to discover his true identity. You're
not the only royal brother who's hiding from the rest of
the world.

Let's explore a bit further. N. TAKE COIN. LOOK AT
COIN. N.

Here at the inn, we can collect a number of items, some
very useful, from the trash pile, and hear a few funny
stories as we wait for folks to dump the goodies. WAIT,
repeatedly, or investigate the horse, the

 297

groom, or the tavern while you wait, and TAKE items
from the pile, until you have collected GREENS, a
WHITE FLASK, a BLACK FLASK, and a MATCHBOOK.
The flasks are especially interesting. During your
subsequent travels, experiment with them as much as
you can, until you figure out how they work.

Now it's time to explore the forest further. S. S. S. S. S.
S. SW. W. W. W. At the wall, READ PLAQUE for a really
broad hint, and then throw away this walkthrough,
because you're really ready to have some fun now if you
work on the problems yourself.

Go SW. Then, in the newly-dug bed, DIG. On the other
side of the wall, go NORTH, where you'll find the classic
(more or less) fairy-tale frog. READ FROG. KISS FROG.
KISS FROG. KISS FROG. Oops, no amphibian prince or
princess here. KILL MANIAC WITH SWORD.

Now for some more exploring of the land encircled by
the wall. Go SOUTH, then EAST, then UP into the tree.
Go UP again, and then UP one more time. WAIT until
the Firebird appears, and then, to effect a gentle
capture, PUT BLANKET ON BIRD.

Climb DOWN, TAKE FRUIT, and then go DOWN again
to the ground. Could any folk hero resist the pleas of the
poor Firebird? You certainly shouldn't. RELEASE BIRD.
If you do not have everything you need for your further

 298

adventures, the firebird will ask you a question. Answer
YES and READ LIST.

It's time to go back under the wall, and to head for the
caterer's camp again. W. D. NE. E. E. NE. S. S. S. After
collecting what the Firebird requested, we'll be ready to
go on to the eastern part of the story, which has been
unavailable to us until now. N. N. N. E. NE. When the
story asks a witty question about saving your soul, you
might as well answer YES.

Now we must deal with the ferrymen. They represent a
problem that is not too difficult and great fun to solve, so
go ahead and solve it without this walkthrough. (Spoiler
Space)

Maps for The Firebird

The Forest

 299

Civilization

The Rivers

Top of the Mountain

 300

Wilderness Maze

The Island

 301

 302

At the first river, GET IN FERRY. WAIT, then WAIT
again. Now you'll have to pay the ferryman, one way or
another. GIVE COIN TO FERRYMAN. But, as it turns
out, you'll need that coin later, so KILL FERRYMAN
WITH SWORD. TAKE COIN.

In order to follow a rather direct route through the story,
we'll now look for a way to circumvent those other
ferrymen. It's more fun, though, to try to deal with them
one by one. Go ahead. Try it.

How can we get around those other grim toll-takers? Go
WEST. SWIM IN RIVER. On the new shore, we find a
fish out of water, a pike. TAKE PIKE. LOOK AT PIKE.
PUT PIKE IN SEA.

Now we enter the world's easiest maze. Go SE. NOTE
2. READ TRAIL. S. SE. S. S. S.

Emerging from the maze, we come upon our murderous
brother Vasilii. KILL VASILII WITH SWORD. LOOK AT
VASILII. Now, let's see. How might we win over a dead
brother? SPRINKLE WATER OF DEATH ON VASILII.
SPRINKLE WATER OF LIFE ON VASILII. (But there's
another, less messy way to deal with Vasilii. See if you
can find it.)

It's time to head for the evil wizard's mountain. Go
EAST, then SOUTHEAST. There's a strange-looking

 303

rock here. LOOK AT ROCK. OPEN DOOR. ENTER.
Inside the cave, LOOK AT DEBRIS. Then, DIG, DIG,
DIG, DIG. Now we have the right tools for mountain
climbing.

EXIT. LOOK. Go NORTHWEST, and WEAR CLAWS.
Time to do some climbing. Go UP. Here's a very strange
building. How might we get in? Note the color
of the place. (Spoiler Space)

REMOVE CLAWS. N. LOOK AT DOOR. PUT COIN IN
SLOT. Here's a character worth chatting with. BIRD,
HELLO. ASK WOMAN ABOUT FIREBIRD. ASK
WOMAN ABOUT WIZARD.

Back outside the edifice, WEAR CLAWS and go UP.

 304

REMOVE CLAWS and go NORTH. LOOK AT DOOR.
LOOK AT UTENSIL. PUT UTENSIL IN SLOT. Once
again, we encounter someone with a real story to tell.
ASK WOMAN ABOUT FIREBIRD. ASK WOMAN
ABOUT WIZARD.

We find ourselves outside again, ready for more
climbing. WEAR CLAWS. U. REMOVE CLAWS. LOOK
AT DOOR. PUT NUGGET IN SLOT. And here's the
Firebird once again! ASK FIREBIRD ABOUT FIREBIRD.
ASK FIREBIRD ABOUT WIZARD. Keep the
conversation going until the Firebird makes it clear that
she has nothing more to say.

One more climb. WEAR CLAWS. U. REMOVE CLAWS.
E. E. NE. SE. W. It looks as though the giant serpent is
blocking our entry into the palace, but we have the
wherewithal to deal with the monster. Take an inventory
(I), and figure it out. (Spoiler Space)

 305

PUT CHAIN ON CENSER. PUT HERBS IN CENSER.
LIGHT MATCH. PUT MATCH IN
CENSER. SWING CENSER AT SERPENT. Now we can
pass. Go W, ENTER, and meet another character who
has a great deal to say.

Now, let's go looking for the egg that we can use to
defeat the wizard.

EXIT. E. NW. SW. W. W. WEAR CLAWS. D. D. D. D.
REMOVE CLAWS. W. L. N.
READ TRAIL. N. N. N. N. NE. SW. S. W. NW.

Here we are at the sea, once again, not far from that
island to the north. Is this the isle that hides the egg?
Go NORTH to reach the island, then NORTH again.

We should probably try to help this unfortunate bear.
MOVE TREE. FALLEN. FREE BEAR. PUSH TREE.
FALLEN. Apparently, we weren't much help, but it's a
small island. Maybe we'll get to try again later. In fact, if
we LISTEN, we'll hear that he's not far away. (Actually, it
is possible to free the bear before he loses his paw.

 306

Check your inventory and see if you can figure it out).

Go NORTH, and find another creature in need, a baby
otter. TAKE OTTER. Let's try to return the baby to the
sea. S. S. PUT OTTER IN SEA. Once again, we haven't
been able to help much.

N. N. N. Yet another animal in trouble, this time, a hawk.
FREE HAWK. UNTANGLE VINES.

N. Here we find a pond and a log, just what we've been
seeking. LOOK AT LOG. TAKE LOG. NW. TAKE LOG.
CLIMB TREE. We're closer to getting the log now.
Maybe the rain will help. WAIT until the pond level rises
sufficiently, and then TAKE LOG.

Let's explore the island further. D. SE. NE. NE. Here's
the bear again. Now we can really help the creature.
How? (Spoiler Space)

 307

SPRINKLE WATER OF DEATH ON BEAR. And we can
help the otter, too, once we see that his mama is here
looking for him. PUT OTTER IN SEA.

SW. SW. NW. Let's break open that log. HIT LOG WITH
SWORD. Apparently, our good deeds are being
rewarded. TAKE HARE. TAKE DUCK. We seem to have
animal allies everywhere. TAKE EGG. LOOK IN
OCEAN.

Are we finally ready to confront our nemesis, the
wizard? SW. S. SW. S. S. S. S.

S. SE. S. SE. S. S. S. E. WEAR CLAWS. U. U. U. U.
REMOVE CLAWS. E. E. NE. SE. W. I. PUT HERBS IN
CENSER. LIGHT MATCH. PUT MATCH IN CENSER.
SWING CENSER AT SERPENT. W. GO IN.

Here we are in the wizard’s castle again, but this time
we have the egg and lots of enthusiastic allies. OPEN

 308

DOOR, and confront the overconfident wizard and his
bodyguards. BREAK EGG.

And, finally, we arrive at the Cathedral of Our Lady, in
triumph and in charge. NOTE 6. DIMITRI, MARRY
ELENA. VASILII, MARRY SILVER. (Try some other
combinations, too.)

MARRY PEARL.

Now go back and try the many other variations that The
Firebird offers!

Here’s the barebones version of this walkthrough.
U
PUT ARROW IN BOW
FOLLOW BIRD (when it moves away)
AIM ARROW AT BIRD
SHOOT BIRD
TAKE BIRD
S
S
GIVE BIRD TO CATERER
LOOK AT WENCH
TAKE MASK
LOOK AT BUSBOY
TAKE ALL
N

 309

N
E
E
DRINK COFFEE
PUT CUP IN BAG
PUT SPOON IN BAG
I
PUT PLATE IN BAG
EAT SANDWICH
PUT PLATE IN BAG
PUT FORK IN BAG
PUT KNIFE IN BAG
PUT NAPKIN IN BAG
W
W
N
N
N
N
WEAR MASK
N
N
ALLERGIST, GIVE STING
ME
N
TAKE COIN
LOOK AT COIN
N
LOOK AT PILE

 310

Z
TAKE GREENS
Z
Z
TAKE FLASK
LOOK AT FLASK
Z
Z
Z
Z
NOTE 1
Z
Z
Z
TAKE FLASK
LOOK AT FLASK
BLACK
Z
TAKE MATCHBOOK
S
S
S
S
S
S
SW
W
W
W

 311

READ PLAQUE
SW
DIG
(the newly dug bed)
(with the shovel)
N
READ FROG
KISS FROG
G
G
KILL MANIAC WITH SWORD
S
E
U
U
U
Z
Z
PUT BLANKET ON BIRD
D
TAKE FRUIT
D
RELEASE BIRD
Y
READ LIST
W
D
NE
E

 312

E
NE
S
S
S
N
N
N
E
NE
Y
GET IN FERRY
Z
Z
GIVE COIN TO FERRYMAN
KILL FERRYMAN WITH SWORD
TAKE COIN
W
SWIM IN RIVER
TAKE PIKE
LOOK AT PIKE
PUT PIKE IN SEA
SE
NOTE 2
READ TRAIL
S
SE
S
S

 313

S
KILL VASILII WITH SWORD
LOOK AT VASILII
SPRINKLE WATER OF DEATH ON VASILII
SPRINKLE WATER OF LIFE ON VASILII
E
SE
LOOK AT ROCK
OPEN DOOR
ENTER
LOOK AT DEBRIS
DIG
DIG
DIG
DIG
EXIT
L
NW
WEAR CLAWS
U
REMOVE CLAWS
N
LOOK AT DOOR
PUT COIN IN SLOT
BIRD, HELLO
ASK WOMAN ABOUT FIREBIRD
ASK WOMAN ABOUT WIZARD
WEAR CLAWS
U

 314

REMOVE CLAWS
N
LOOK AT DOOR
PUT UTENSIL IN SLOT
ASK WOMAN ABOUT FIREBIRD
ASK WOMAN ABOUT WIZARD
WEAR CLAWS
U
REMOVE CLAWS
LOOK AT DOOR
PUT NUGGET IN SLOT
ASK FIREBIRD ABOUT FIREBIRD
ASK FIREBIRD ABOUT WIZARD
ASK FIREBIRD ABOUT HERBS
WEAR CLAWS
U
REMOVE CLAWS
E
E
NE
SE
W
I
PUT CHAIN ON CENSER
PUT HERBS IN CENSER
LIGHT MATCH
PUT MATCH IN CENSER
SWING CENSER AT SERPENT
W

 315

GO IN
EXIT
E
NW
SW
W
W
WEAR CLAWS
D
D
D
D
REMOVE CLAWS
W
L
N
READ TRAIL
N
N
N
N
NE
SW
S
W
N
NW
N
N

 316

MOVE TREE
FALLEN
FREE BEAR
FREE PAW
PUSH TREE
FALLEN
N
TAKE OTTER
S
S
PUT OTTER IN SEA
N
N
N
FREE HAWK
UNTANGLE VINES
N
LOOK AT LOG
TAKE LOG
NW
TAKE LOG
CLIMB TREE
TAKE LOG
D
SE
NE
NE
SPRINKLE WATER OF DEATH ON BEAR
PUT OTTER IN SEA

 317

SW
SW
NW
HIT LOG WITH SWORD
TAKE HARE
TAKE DUCK
TAKE EGG
LOOK IN OCEAN
SW
S
SW
S
S
S
S
S
SE
S
SE
S
S
S
E
WEAR CLAWS
U
U
U
U
REMOVE CLAWS

 318

E
E
E
NE
SE
W
I
PUT HERBS IN CENSER
LIGHT MATCH
PUT MATCH IN CENSER
SWING CENSER AT SERPENT
W
GO IN
OPEN DOOR
BREAK EGG
NOTE 6
DIMITRI, MARRY ELENA
VASILII, MARRY SILVER
MARRY PEARL

 319

Chapter 14 – An Interactive Fiction Competition
Winner:

Winter Wonderland

 Laura Knauth’s Winter Wonderland is a beautifully
plotted puzzle-fest, built around various legends of the
solstice. The story won the Rec.arts.int-fiction
Interactive Fiction Competition in 1999, and is highly
suitable for kids.

 The story includes an excellent system of on-line
hints, and its mazes are quite easy to map. One
problem involving snow imps is hard for many users.
Just remember that, as the hints suggest, it’s important
to watch the imp from your hiding place for a very long
time.

 The map that appears below may help with some
locations in the story, especially the entrance to the ice

 320

floes maze.

 Laura's original map, which she used in the writing
of the story, is at
http://www.lauraknauth.com/Winter/WinterMap.JPG

http://www.lauraknauth.com/Winter/WinterMap.JPG

 321

Chapter 15 – An Interactive Tragedy: Photopia

 Many of the stories recommended on this web site
are similar in a number of ways. Most include puzzles
that kids like, most are not especially difficult as works
of literature, and all have happy endings. Indeed, many
have been crafted explicitly for young readers.

 Adam Cadre’s masterful IF novella, Photopia, is
entirely different. It includes no puzzles in the usual
sense of the term, drawing in students and other
readers in a variety of creative and compelling ways. It
is so challenging as literature that even experienced
readers sometimes ask whether its final scene can
really be the end of the story. It is an extraordinarily sad
tale whose main character is a middle school student –-
sad enough to warrant an early warning from the
teacher that this is not a happy tale. And it is not
targeted at kids -– in fact, some teachers who use it
may choose to censor some profanity that appears in

 322

some versions of its first brief scene.

 Photopia is simply inaccessible to most pre-college
readers when they are working independently; but, with
the right kind of guidance, the same students can enjoy
the story and learn a great deal from it. The teacher’s
approach, however, must vary considerably from other
classroom approaches to interactive fiction.

 Though Photopia offers no puzzles of the usual sort,
it is a puzzling tale, in that it challenges the reader to
determine how several apparently disparate plot threads
are integral parts of the same story. Students can help
themselves to follow these plot threads by listing each
scene of the story on paper, so that the plot threads can
eventually emerge and be integrated. The story helps
with this procedure by associating a series of colors with
the scenes that constitute one of the principal plot
threads. Also, since the story’s point of view shifts from
scene to scene, the author has implemented a “Who am
I?” command.

 323

 For each scene, students can profitably record the
results of the “Who am I?” query, the color associated
with the scene, if any, and a brief description of the
action. As they look back at their writings about the
scenes, the students will find it fairly easy to identify
three plot threads by the time they reach the half-way
point of the story. One of these will consist of just one
scene, involving two drunken college students who
cause a traffic accident. The second, combining several
color-associated scenes, tells an apparently-unrelated
science-fantasy tale; and the third offers a number of
episodes from the life of Alley Dawson, a very kind and

 324

bright young girl. Eventually, students will be able to
see how all three threads constitute a single tragic plot.

 Photopia has gained a reputation as one of the
finest work of IF ever created. It is surely challenging for
both teacher and student, but it works well in the
classroom, and it is more than worth the effort that it
demands.

 Photopia is available, in several versions, at the
Interactive Fiction Database (http://ifdb.tads.org). The
“Competition Version” is the only one that contains
strong profanity in the opening scene.

http://ifdb.tads.org/

 325

Chapter 16 -- An Interactive Fiction About Middle
School Students:

The Enterprise Incidents

IF and the Teaching of Content

 This book deals, almost exclusively, with helping
students to read, write, and think more effectively. Still,
some very fine IF stories have focused on teaching
content, too. 1893: a World's Fair Mystery (2002)
recreates of the most important events in the history of
popular culture, an event that many history classes deal
with, at least to some degree. The story's author, Peter
Nepstad, deliberately developed this fine work to appeal
to educators, though some of its plot twists may be a bit
strong for younger students. A bit of traditional poetry
might cause a stir in a principal's offices, too:

When Adam delved and Eve span,
Who was then the gentleman?

 1893 is a formerly-commercial product, now
available at the IF Database (http://ifdb.tads.org)

 326

 The Chinese Room by Harry Giles and Joey Jones
(2007) offers entertaining lessons in philosophy by
giving the reader interactive versions of famous thought
experiments, starting with John Searle's famous critique
of the Turing Test. It's pretty hard to make these
experiments interactive, though, since they aren't, by
nature, puzzle-oriented. Searle's “Chinese Room,” for
instance, in its IF version, becomes an attempt to
escape from the chamber, while Searle's experiment, as
he wrote it, has nothing to do with escaping.
Nevertheless, you can teach yourself, and your
students, some broad and important lessons in
philosophy with this game.

 Schools often deal with mythology in one way or
another, and so does interactive fiction. Myth Tale, by
Temari Seikaiha (2002) presents several Greek myths in
interactive form, along with some funny bits about cats.
Arthur: the Quest for Excalibur by Bob Bates (Infocom,
1989), one of the most acclaimed If stories for young
people, stays quite close to the traditional legends.

 327

 Trinity by Brian Moriarty (Infocom, 1985) has earned
extraordinarily high praise from IF readers throughout its
long history. Though the tale features elements of poetic
fantasy, it can teach its reader about the history of
atomic weaponry through dramatic scenes set at actual
historical settings of nuclear detonations, in Nevada
(1945 and 1974), Nagasaki (1945), Siberia (1949), and
elsewhere. Trinity is a difficult story with challenging
problems, but it's always rewarding.

A Story About Getting by in Middle School

 The Enterprise Incidents: a Middle School Fantasy,
is a story about middle school kids and teachers. Its
puzzles are fairly easy, though its reading level can be
challenging at times. “The Enterprise Incidents” was
written by Brendan Desilets, who offers this book. Beta
testers of The Enterprise Incidents were Sophie
Fruehling, Jeff Nassiff, Matt Carey, and Sean Desilets.
Hints and a walkthrough are available within the story.

 The Enterprise Incidents tries to teach some content
that might be of use to students aged eleven to
fourteen, especially those who get involved with unusual
tasks like delivering Valentine's Day candy grams to
other students during the school day. It instructs
students, for instance, to follow the sometimes-arcane
procedures that many schools require for kids who are
in the halls during classes, and it provides some puzzles

 328

that hinge on unanticipated contingencies, such as
encountering a student who claims to have purchased a
candy gram but is not on the list of recipients.

 You can download the z-code (plain text) story file
for The Enterprise Incidents from the Interactive Fiction
Database. For more information on using a story file,
read the “Acquiring Interactive Fiction” chapter in this
book.

 Or, if you prefer, you can probably read The
Enterprise Incidents on line, using the “Play Online”
button on the story's Interactive Fiction Database page.

 Another version of The Enterprise Incidents
includes some on-screen maps and other graphical
elements. You can download the story file for this
version, from the IF Database, too. This variation of the
story uses an IF-creation tool called Glulx and requires
an interpreter that is different from the ones used with
other stories featured in this book. The interpreter called
“Gargoyle” works best for this story. Gargoyle is
available at http://ccxvii.net/gargoyle/. Hints for this
version of the story are at
http://if1.home.comcast.net/~if1/hints.html.

 The pictures and maps that appear below may add
to your enjoyment of the story, if you are reading the z-
code version. These graphics appear in the Glulx

http://ccxvii.net/gargoyle/
http://if1.home.comcast.net/~if1/hints.html

 329

version.

The mural in the cafeteria, where the story begins

A candy gram card

 330

A decorated locker

A math cake from Ms. Garrulous’ class

The cover of Ed Dibbles’ science folder

 331

Meghan Mascaras’ science folder

A poster from outside the office. Fishing is cancelled

because of Mr. Pisces’ need for a bone marrow
transplant.

 332

An art project by Silas Gibber

Jim Hastely’s riddle poem

 333

A Map of the North-South Hall

 334

A Map of the East-West Hall

To reach the North-South Hall,
go southeast from the hall

near the Office.

Walkthrough

 This is a walkthrough of The Enterprise Incidents: A
Middle School Fantasy by Brendan Desilets, Release 2.
Like many of its fellows, this walkthrough does not
explore many of the avenues that make the story
enjoyable. The player’s inputs are preceded with the >
symbol. At times, in the course of the story, characters
will initiate conversations. These are good occasions for
chatting with the characters in question, but the
walkthrough often does not specify which
conversational choices are best.

>open door
>talk to alltext
>3
>g
>3
>g
>1
>1
>talk to queenie
>1

 335

>g
>1
>g
>1
>look at mural
>look at queenie
>4
>n
>take list
>take envelope
>read list
>s
>close door
>w
>n
>e
>give gram to meghan
>w
>s
>s
>e
>w
>s
>talk to Stephanie
>1
>g
>2
>look at Stephanie
>put gram in basket

 336

(Queenie will initiate some conversation here.)
>open door
>w
>give gram to Danielle
>say -120 to garrulous
>e
>n
>n
>n
>n
>wear badge
>open door
>knock on door
>talk to empirious
>1
>w
>take jar
>give gram to ed
>e
>nw
>talk to woman
>1
>w
>w
>e
>n
>talk to reunite
>1
>g

 337

>3
>s
>w
>w
>s
>give gram to Alicia
>give gram to andrea
(Queenie will invite a conversation here.)
>n
>e
>n
>say rat to Picasso
>give gram to silas
>s
>e
>n
>give pass to reunite
>s
>se
>s
>s
>w
>1
>give gram to jim
>say firefly to jim
>look at list
>talk to alltext
>2
>e

 338

>give gram to queenie
>4
>e
>open door
>n

 339

Chapter 17 – Acquiring Interactive Fiction

 Fortunately, interactive fiction is inexpensive and
fairly easy to find. Most IF stories that have been written
since 1990 are free of charge and available via the
Web, especially through the Interactive Fiction
Database (http://ifdb.tads.org). The IF database also
offers links for running many stories in a Web browser,
and it presents a good set of instructions for getting the
same stories running on the user's local computer.
However, running stories on a local computer often
works more smoothly than reading the same stories
online, especially when it comes to saving one’s
progress. But getting the stories to run on local PC's,
Macs and Linux computers is a multi-step process.

 To run an interactive fiction on a particular
computer, you usually need two pieces of software on
your computer. One piece of software is called an
interpreter. The interpreter you need for a particular
story depends mainly on two factors, the kind of
computer you have and the tool the author used to
create the story.

Interpreters

 Each Internet-distributed story recommended on
this site was created with one of five tools. These tools
are called Inform, TADS, Hugo, Quest, and Adrift.

http://ifdb.tads.org/

 340

Authors who write with Inform sometimes create stories
in a format called z-code. Other Inform writers use an
extension called Glulx, if they want to create very large
stories or stories with multimedia elements. Interpreters
for stories made with these tools are available for just
about any kind of computer, even older, more unusual
ones. If you have one Inform interpreter, one Glulx
interpreter, one TADS interpreter, one Hugo interpreter,
and one Adrift interpreter on your computer, you have
enough interpreters to run almost all the stories
recommended on this site.

 Quest stories are a little different. They're often read
online, and their only offline interpreter is the same
Quest program that's used to write the stories. This
program runs only on Windows. Beyond these five
authoring systems, there are other IF-development
systems, with their own interpreters, but, once you get
the hang of using one interpreter, you'll probably be able
to handle them all.

 There's an excellent list of interpreters at
http://www.ifwiki.org/index.php/Interpreter

http://www.ifwiki.org/index.php/Interpreter

 341

 You can simplify the interpreter-gathering process
by using a tool that combines a number of interpreters
into one application. The most widely used of these is
Gargoyle, which runs on Windows, Mac, and Linux. The
Linux version is sometimes called “gargoyle-free.” Many
Mac users like two other multi-interpreter programs,
Zoom and Spatterlight. These multi-interpreter systems
are fine for most users, though they make it a bit tricky
to change font sizes and styles. In addition, they will, in
general, not run one of the highly-recommended stories
in this book, Arthur: the Quest for Excalibur. To read
Arthur, on Windows, you'll need an easily-installed
interpreter called Windows Frotz
(http://www.davidkinder.co.uk/frotz.html). Frotz is also
available for Linux and Mac, though the Mac version is
very difficult to install successfully. Arthur, however, will
run on Zoom for the Mac, if the user renames the story
file from ARTHUR.ZIP to ARTHUR.Z8.

 342

 You can download interpreters from the IF Archive.
The IF Database links to them, too.

 Google Play and iTunes offer a limited spectrum of
interpreters for IOS and Android.

Story Files

 To run a story, you need, in addition to an
interpreter, a story file. The story file you need depends
only on which story you want to run – it doesn’t matter
what kind of computer you have.

 So, if you want to read the TADS game The One
That Got Away, using a Macintosh, you need the right
story file and the right interpreter, which, in this case
would be a TADS interpreter for the Macintosh, or a
multi-interpreter program for the MAC. Gargoyle, Zoom,
and Spatterlight will all work fine.

Where Can I Get These Things, Again?

 You can find links to plenty of interpreters and story

 343

files at the Interactive Fiction Archive and the Interactive
Diction Database. Downloading, at present, is usually
just a matter of left-clicking or right-clicking on a link.
Downloaded files are often compressed and/or
archived.

 Newer computer operating systems make
decompressing files quite easy, by showing compressed
files as folders that can be opened like other folders or
extracted to show their contents.

If For Sale

 A few contemporary works of IF are commercial
products, always reasonably priced. Textfyre.com sells
Jack Toresal and the Secret Letter
(http://textfyre.itch.io/jack-toresal-and-the-secret-letter)
and The Shadow in the Cathedral
(http://textfyre.itch.io/the-shadow-in-the-cathedral.) You
can buy the brilliant Hadean Lands at its own website.
And several works of IF are for sale at iTunes and
Google Play.

 Things get a bit trickier when you're looking for
classic works from the 1980's. Most of the best works
from this era were published by a company called
Infocom. You can buy most of the Infocom stories,
(thirty-three, to be exact) for both PC and Macintosh
computers, in one magnificent collection called Classic

 344

Text Adventure Masterpieces of Infocom (often called
Masterpieces of Infocom). However, Masterpieces has
become quite difficult to find in the last few years, and
since it dates from the days of DOS, it doesn't always
play well with modern computers. Fortunately, most of
the story files from Infocom, the ones that have the
extension .dat, will run on multi-format interpreters like
Gargoyle and Spatterlight. The Infocom stories that
have the .zip extension (Arthur, for example) will run on
the z-code interpreter called “Frotz.”

 345

 Masterpieces, along with less comprehensive (and
less pricey) collections like The Lost Treasures of
Infocom, is often available at ebay and at Amazon.com.
Just search ebay or Amazon, using “Infocom” as your
search term. In early 2015, the lowest available price
for Masterpieces seems to be $70.00 US.

Abandonware

 It is also possible, though not really legal, to
download all the Infocom stories from the Web, under
the concept of abondonware. Those who offer the
stories in this way often include disclaimers like this
one, from Achim J. Latz:

 346

 “Copyright by Infocom, Inc. Provided for non-
commercial use only, with the sole intent of making
information available that would otherwise be lost. To
whomever presently holds the copyright to the
information contained in this page: if you think the
existence of this page violates your copyright, please
complain to achim@latz.org and this page will be
removed.”

 One site that offers the Infocom stories in this way is
called My Abandonware
(http://www.myabandonware.com). This site urges its
users to try to purchase the software it offers, before
downloading it for free. Why would one do this? In
addition to staying within the law, a person who
downloads from My Abandonware will probably be able
to run the story on a modern computer more easily.

mailto:achim@latz.org
http://www.myabandonware.com/

 347

 Most abandonware sites are oriented toward
Windows and DOS, but, in the case of Infocom stories,
the story files will work on all kinds of computers. DOS
programs, in general, can run on practically all modern
computers, using the software emulator called DOSBox.
DOSBox is not the most intuitive program for users of
modern graphical interfaces, but it works very well on
Windows, Mac OS X, and Linux. Once you have
DOSBox working, you can use it to run Infocom stories,
including Arthur, without having to deal with an
interpreter.

Raiders of the Lost Software

 People who don't like obtaining software illegally
have often mused, “Wouldn't it be great if a publisher
like Activision, which now owns the Infocom stories,
could just sell them for five dollars apiece? Acitivision,
which now makes no money at all on the Infocom titles,
would earn a few dollars, and readers would be happy,
too.”

 Yes, it would be great if Activision had a such a way
to act on its own self-interest, but, in the current era of
app stores and repositories, the software publishers
already have an easy way to sell their back titles for a
few dollars each.

 Why don't they? Perhaps they're just a bit slow to

 348

react. By the time you read this, maybe you'll be able to
buy Plantefall, tricked out for your great new phone or
laptop, for a sum of money that you'll never miss.

 349

Fun and Learning With Interactive Fiction
(Mostly for Kids)

Chapter 18 – What is IF?

 Interactive fiction, or IF, is a kind of story in which
the reader plays the part of an important character,
deciding, most of the time, what the character will do.
By typing ordinary English sentences at a computer
keyboard, the reader or, frequently, a group of readers,
decide where the main character will go, what objects
he or she will pick up and use, how he or she will solve
problems, and how he or she will behave toward other
characters. An interactive fiction story is a lot like a
video game in words.

 Often, when people talk about interactive fiction,
also known as IF or adventure gaming, they are thinking
about stories that are told mainly through words, not
pictures. Sometimes, though, people use the term
“graphical interactive fiction” when they mean stories
that are told largely through pictures. Famous
examples of graphical interactive fiction include Myst
and Riven.

 At other times, people talk about “choice-based
interactive fiction.” In this kind of story, the reader
makes choices by clicking on links, not by typing

 350

commands in ordinary language.

 This book is about the kind of interactive fiction that
uses mostly words to tell its story. It's also about the
kind in which the reader types in commands, rather than
clicking on links. Typing in commands allows the reader
to have more freedom in deciding what her or she wants
to do. It lets the writer write in a more open-ended way,
too.

 Would you like to try some IF right now? If your
browser is Java-enabled, you can try out lots of stories
online, including a really good one called Mrs. Pepper's
Nasty Secret. One of its Web pages is at
http://ifdb.tads.org/viewgame?id=dcvk7bgbqeb0a71s.
Just click on the “Play Online” link to start. You can get
hints by typing “hint,” and helpful maps appear below.
However, you may want to read about communicating
with interactive fiction before you attempt one of the
stories. You’ll find a section about communicating with
IF later on in this chapter.

 351

 352

Communicating in Interactive Fiction

 What’s wrong with this picture? If you’re tried
interactive fiction and hated it, you may think you know.
Actually, may kids get off to bad start with IF when
someone says, “Look at this great program! All you
have to do is type in what you want to do. It’s just like
reading a novel!” But when you try a story yourself, you
seem to get nothing but error messages that make very
little sense.

 In truth, even the best IF programs can deal with
only a few kinds of English sentences.
However, interactive fiction authors are really trying to
help. Sometimes, the help is built into the story itself.
For example, the story might display this text early on:
“Type 'about' for more information about this story.”

 At other times, the help, or some of it, will be in
separate the instructions that come with the story. If you
use these aids, you’ll find communicating with IF
programs much easier.

 353

 In general, try these suggestions. All works of
interactive fiction, even the very earliest ones, can
recognize sentences like “take coin,” which the story will
consider to mean, “I want to take the coin.” The IF
stories recommended here can recognize many more
kinds of sentences, but experienced readers often keep
the two-word pattern in mind, anyway. For example, IF
stories can now recognize “Take the gold coin,” “Take
the gold coin from the fountain,” or “Take the gold coin
and give it to the librarian.”

 In addition, many works of IF can recognize at least
some simple questions that begin with “who,” “what,” or
“where.” Most stories also use a variety of useful
abbreviations, including “g” for “again,” “z” for “wait,” “i”
for “inventory of what I’m carrying,” “l” for “look,” “n” for
“go north,” “s” for “go south,” and “u” for “go up.”

 Conversing with other characters in IF can be lots of
fun, but it can be frustrating, too, unless you keep in
mind several patterns that most of the stories can
understand. Directly talking to a character with a
command will often work; for example, “Miss Voss, tell
me about the magic stone.” Also, a reader can often
make progress by asking or telling a character about
something, as in “Ask the bartender about the vampire.”
Frequently, a story will interpret a single word to mean
that the character says the word. In other words, “hello”
will often mean the same as “say ‘hello,’” though it is

 354

necessary to type out ”say hello.” “Talk to Mrs. Pepper
(or whatever the character is called)” also works in
many stories.

 355

Getting Un-Stuck

 Another objection? You learned to communicate
with the program just fine but soon became “stuck” in
trying to solve a problem and finally decided to give up?
Well, that sort of thing happens to all of us. In fact,
figuring out tough problems is part of the fun of IF. And,
as a matter of fact, few readers get through a whole
piece of interactive fiction without help from someone
else. A problem that seems impossible to me may be
easy for you, and so interactive fiction often ends up as
a social activity.

 What if there’s no one available to work with? Then
use the hints and “walkthroughs” that you can find on
the World Wide Web, especially at the Interactive
Fiction Database (http://ifdb.tads.org). A Google or
DuckDuckGo search for “Mrs. Pepper walkthrough” will
often work, too. But try not to look at the hints until
you’ve really tried to solve the problem yourself.

 If you’d like just right amount of hinting, from people
who know how to avoid giving away too much, try the
Interactive Fiction Forum at

http://ifdb.tads.org/

 356

http://www.intfiction.org/forum/.

 Here are some Web addresses for walkthroughs for
stories recommended on this site:
Wishbringer – http://www.gamefaqs.com/pc/564461-
wishbringer/faqs/13727
Moonmist – http://www.gamefaqs.com/pc/564468-
moonmist/faqs/1619
Arthur: the Quest for Excalibur –
http://www.ifarchive.org/if-
archive/infocom/hints/solutions/arthur.txt
A Bear's Night Out – http://ifarchive.jmac.org/if-
archive/games/competition97/inform/bear/bear.sol
The Magic Toyshop – http://ifarchive.giga.or.at/if-
archive/solutions/magictoy.sol
Lost Pig – http://ifarchive.giga.or.at/if-
archive/games/competition2007/zcode/lostpig/walkthru.t
xt

Clash of the Type-Ins

 The best way to learn about IF is to read a story
with someone who has experience with interactive
fiction. But you may not know anyone who's like that.
Still, you probably do have a way to listen to
experienced readers as they make their way through
several IF stories. This free-and-easy teacher takes the
form of a very funny podcast called “Clash of the Type-
ins” (http://rcveeder.net/clash/) In each episode, hosts

http://www.gamefaqs.com/pc/564461-wishbringer/faqs/13727
http://www.gamefaqs.com/pc/564461-wishbringer/faqs/13727
http://www.gamefaqs.com/pc/564468-moonmist/faqs/1619
http://www.gamefaqs.com/pc/564468-moonmist/faqs/1619
http://www.ifarchive.org/if-archive/infocom/hints/solutions/arthur.txt
http://www.ifarchive.org/if-archive/infocom/hints/solutions/arthur.txt
http://www.ifarchive.org/if-archive/infocom/hints/solutions/arthur.txtA
http://www.ifarchive.org/if-archive/infocom/hints/solutions/arthur.txtA
http://www.ifarchive.org/if-archive/infocom/hints/solutions/arthur.txtA
http://ifarchive.jmac.org/if-archive/games/competition97/inform/bear/bear.solThe
http://ifarchive.jmac.org/if-archive/games/competition97/inform/bear/bear.solThe
http://ifarchive.giga.or.at/if-archive/solutions/magictoy.sol
http://ifarchive.giga.or.at/if-archive/solutions/magictoy.sol
http://rcveeder.net/clash/

 357

Ryan Veeder and Jenni Polodna, both experienced IF
readers and writers, read a story together. Most
episodes include a third participant, the author of the
story that's being read.

 From the “Clash” website, here's a list of some of
the best episodes for kids. You can't go wrong with any
of them.

EPISODE ONE: You've Got a Stew Going! (February 6,
2014)
In this, the first episode, Jenni Polodna plays Ryan
Veeder's first game, a game about rats. Jenni says the
word 'titular' kind of a lot. If horses ran the world,
keyboards would be weird.

EPISODE THREE: It (April 16, 2014)
Jenni and Ryan play Emily Boegheim's It. It is the name
of the game. Cultural gaps are bridged. Murder is
considered.

EPISODE NINE: A Day for Fresh Sushi (January 9,
2015)
Jenni and Ryan play Emily Short's Speed-IF about an
angry fish.

EPISODE TEN: Bronze (January 10, 2015)
Emily Short brings us one of her fractured fairy tales
and Ryan works himself into a fanboy frenzy. Jenni tries
to remember Dom DeLuise's first name. Shameful

 358

lunchtime secrets are revealed. This episode includes
some interesting discussion of IF in general.

 359

Chapter 19 – Why Kids Like Interactive Fiction

 Since 1985, the author of this web site has
introduced about a thousand young people, aged
eleven through twenty, to interactive fiction. Most of
them like it. In fact, it is the most popular form of
literature with most.

 Lots of kids and young adults tell me that they like
interactive fiction mainly because it’s an exciting way to
read a story, a way that lets them feel very active and
involved. They enjoy using IF to gain experience with
all of the major elements of literature, such as plot,
setting, and point of view.

 Many young people also like the problem-solving
that comes with the IF experience. These folks
appreciate interactive fiction because it challenges them
to recognize and solve problems, in ways that no

 360

textbook seems able to match.

 Here’s what young people themselves say about
interactive fiction and about their favorite stories.

 “Interactive fiction can be fun because it is like a
game. You get to be a character and explore, and
figure out puzzles. It is good because it gets people to
use their imaginations.”

 “Kids like IF because it’s fun. It gets you thinking
and helps you learn strategy.”

“Kids choose IF because they get to decide what
happens next.”

 “I would recommend Zork I because it is somewhat
challenging and you need to use lots of thought. It is a
very exciting game, too. You get to try lots of things.”

 “The book/game I am reading, Zork I, is an
adventure story. You start off as a regular person, and,
as you get more into the game, you get more
experience. You find all sorts of different treasures, and
it is really FUN.”

 “I like the way you participate, instead of just
reading a book. IF also makes you think.”

 361

 “I like Suspect the most of all the interactive fiction I
have done so far. I like it mostly because I like
mysteries and solving puzzles.”

 “My favorite piece of literature this year is
Moonmist. I like it a lot because it was my first piece of
interactive fiction. It also had a great plot.”

 362

 “My favorite piece of reading this year is Arthur: the
Quest for Excallibur. I like it because it is a good
adventure story and I like adventures, and because I
like King Arthur stories. In this one, I like how you can
change into different animals.”

Reading IF Aloud

 In my twenty-two years of work as a middle school
teacher, I found that students generally enjoy interactive
fiction a great deal. In fact, about thirty percent of my
students chose IF, over all other options, for individual
silent reading. However, they liked IF much more when
they could read it aloud, together. When they could read
IF together, about eighty-five percent of the kids like IF
more than other literature. Why did this form of literature
motivate oral reading more than silent reading? Three
factors came together to produce this result: solving
problems together, reading stories in bite-sized chunks,

 363

and a feeling of writing a story while reading it.

 As this chapter has shown, students are very much
aware that they like IF because of its gamelike problem-
solving. They can also easily see that, with interactive
fiction, there are lots of well-placed pauses for reader
input. These pauses create excellent places to switch
readers, at random, or otherwise.

 Students aren't always aware, though, that they
enjoy a sense of creating a story, rather than just
reading it. When I ask them about this advantage, they
report that they do feel that they are being creative
when they read IF, and that they like this sense of
writing a story while they're reading it.

 If you'd like to explore this sense of creating a story
further, have a look at “Joys of the Parser” in Chapter 2
of the “Teaching with Interactive Fiction” part of this
book.

 You can also find more information about what kids
can learn from interactive fiction in “Teaching With
Interactive Fiction.”

 364

Chapter 20 – Top IF Stories for Kids

The Top Fifty-One Works of Interactive Fiction
(In One Person’s Opinion)

For People Aged 10-16, and Older

If you’re having trouble finding a story on the Interactive
Fiction Archive, search for it in The Interactive Fiction
Database (http://ifdb.tads.org). In fact, you may be
happier if you simply start at the IF Database. At the IF
Database, many stories, on their main pages, have a
link that allows you to try the story online. To save your
progress when playing online, type “Save,” follow the
prompts. If you don't get any prompts, bookmark the
page after you've typed “Save.” and then bookmark the
page. For information on obtaining commercial stories
from the publisher called Infocom, see the chapter on
Obtaining Interactive Fiction from this book.

1. Arthur: the Quest for Excalibur by Bob Bates, a well-
plotted version of the story of King Arthur as a boy,
excellent for middle schoolers and older (ages 11 and
up) (Available in Masterpieces of Infocom and other
collections of Infocom stories, often Offered at ebay
and Amazon)

2. Lost Pig by Admiral Jota, an award-winning, comic
story in which the reader plays the role of an orc.
(Available at the IF Archive and IF Database)

http://ifdb.tads.org/

 365

3. Wishbringer by Brian Moriatry, a rather gentle fantasy

adventure, excellent for middle school students
(Available in Masterpieces of Infocom)

4. The Firebird by Bonnie Montgomery, a comic retelling
of the Russian folk tale, excellent for kids aged eleven
and up (Available at the Interactive Fiction Archive,
and at the IF Database)

5. Winter Wonderland by Laura Knauth, a finely-crafted
winter solstice story, excellent for middle schoolers
(Available at the Interactive Fiction Archive,
http://www.ifarchive.org and at the Interactive Fiction
Database.)

 6. A Bear’s Night Out by David Dyte, a funny story of a
teddy bear who comes to life (Available at the
Interactive Fiction Archive, and at the Interactive
Fiction Database)

http://parchment.googlecode.com/svn/trunk/parchment.html?story=http://parchment.toolness.com/if-archive/games/zcode/winter.z5.js
http://www.ifarchive.org/
http://parchment.googlecode.com/svn/trunk/parchment.html?story=http://parchment.toolness.com/if-archive/games/zcode/bear.z5.js

 366

7. The Earth and Sky Trilogy–Earth and Sky by Paul
O’Brian, three comic superhero stories (Available at
the Interactive Fiction Archive,
http://www.ifarchive.org)

8. The Earth and Sky Trilogy–Another Earth, Another
Sky by Paul O’Brian, three comic superhero stories
(Available at the Interactive Fiction Archive,
http://www.ifarchive.org)

9. The Earth and Sky Trilogy–Luminous Horizon by Paul
O’Brian, three comic superhero stories (Available at
the Interactive Fiction Archive,
http://www.ifarchive.org)

10. Mother Loose by Irene Callaci, an amusing retelling
of some classic fairy tales, excellent for middle school
students (Available at the Interactive Fiction Archive,
http://www.ifarchive.org)

11. Mrs. Pepper’s Nasty Secret by Eric Eve and Jim
Aiken, a clever and lighthearted puzzle-fest, good for
beginners. (Available at
http://ifdb.tads.org/viewgame?id=dcvk7bgbqeb0a71s)

http://www.ifarchive.org/
http://www.ifarchive.org/
http://www.ifarchive.org/
http://parchment.googlecode.com/svn/trunk/parchment.html?story=http://parchment.toolness.com/if-archive/games/zcode/loose.z5.js
http://www.ifarchive.org/
http://ifdb.tads.org/viewgame?id=dcvk7bgbqeb0a71s

 367

12. The Matter of the Monster by Andrew Plotkin, an
inventive variation on the “Choose Your Own
Adventure” type of story. Quite brief and very
enjoyable.

13. Jack Toresal and the Secret Letter by Michael
Gentry, an exciting interactive novel with a
suspenseful plot and wonderfully interactive
characters (Available for purchase
athttp://textfyre.itch.io/jack-toresal-and-the-secret-
letter)

14. Bonehead by Sean M. Shore, the mostly-true story
of Fred Merkle, who made one of major league
baseball’s most famous mistakes. (Available in the IF
Archive and in the IF Database)

15. Aoteoroa by Matt Wingall, a lively tale of the modern
world–with dinosaurs. (Available in the IF Archive and
in the IF Database)

http://eblong.com/zarf/zweb/matter/
http://iplayif.com/?story=http://if1.home.comcast.net/Bonehead.gblorb
http://www.wigdahl.net/Aotearoa/

 368

16. History Repeating by Mark and Renee Choba, a
time travel story about a man who neglected an
important assignment in his high school history class
(Available at the Interactive Fiction Database,
(http://ifdb.tads.org)

17. Moonmist by Jim Lawrence and Stu Gally, a mystery
for kids, set in a Cornish castle, good for readers
aged eleven and up (Available in Masterpieces of
Infocom)

18. Zork I by Marc Blank and Dave Lebling, a fantasy
treasure hunt (Available at the IF Database)

19. The One That Got Away by Leon Lin, a brief, funny
story about fishing (Available at the Interactive Fiction
Database)

20. Small World by Andrew Pontius, a fantasy about a

 369

boy who sets a mixed up world right (Available at the
Interactive Fiction Archive, http://www.ifarchive.org)

21. The Magic Toyshop by Gareth Rees, an imaginative
puzzle fest (Available at the Interactive Fiction
Database)

22. Mingsheng by Deane Saunders, a sometimes
mystical story, always gentle story involving martial
arts (Available at the Interactive Fiction Archive,
http://www.ifarchive.org)

23. Dragon Adventure by William Stott, an adventure
story for children aged nine and up (Available at the
Interactive Fiction Archive, http://www.ifarchive.org)

24. The Great Xavio by Reese Warner, a comic
detective story (Available at the Interactive Fiction
Archive, http://www.ifarchive.org)

25. Bronze by Emily Short, a Gothic retelling of Beauty

http://www.ifarchive.org/
http://parchment.googlecode.com/svn/trunk/parchment.html?story=http://parchment.toolness.com/if-archive/games/competition95/magic-toyshop.z5.js
http://www.ifarchive.org/
http://parchment.googlecode.com/svn/trunk/parchment.html?story=http%3A//if1.home.comcast.net/Dragon.z5
http://www.ifarchive.org/
http://parchment.googlecode.com/svn/trunk/parchment.html?story=http://parchment.toolness.com/if-archive/games/zcode/GreatXavio.z5.js
http://www.ifarchive.org/
http://parchment.googlecode.com/svn/trunk/parchment.html?story=http%3A//if1.home.comcast.net/Bronze.z8

 370

and the Beast, with some relatively mild references to
sexuality and, in its original version, other material
that is inappropriate for younger children. (A specially-
edited version for mature young people is available at
http://inform7.com/teach/downloads/Bronze.z8.zip)

26. Dreamhold by Andrew Plotkin, a difficult fantasy
story with help for beginners (Available at the
Interactive Fiction Archive, http://www.ifarchive.org)

27. The Lost Islands of Alabaz by Michael Gentry, an
action-packed fantasy tale (Available at the IF Archive
and at the IF Database)

28. The Promise by Sean Huxter, a fantasy story that
may remind you of a movie called The Secret of Kells
(Available at the IF Archive and at the IF Database)

29. The Shadow in the Cathedral by Ian Finley and
John Ingold, a fantasy puzzle fest with a compelling
plot (Available for purchase at

http://inform7.com/teach/downloads/Bronze.z8.zip
http://parchment.googlecode.com/svn/trunk/parchment.html?story=http://parchment.toolness.com/if-archive/games/zcode/dreamhold.z8.js
http://www.ifarchive.org/
http://www.edromia.com/alabaz/play.html
http://www.huxter.org/promise/play.html

 371

http://textfyre.itch.io/the-shadow-in-the-cathedral)

30. Seastalker by Stu Galley and Jim Lawrence,
adventure in a futuristic submarine, good for middle
school (Available in Masterpieces of Infocom)

31. The Orion Agenda by Ryan Weisenberger, a Star-
Trek-like story of a distant planet (Available at the
Interactive Fiction Archive, http://www.ifarchive.org)

32. Taco Fiction by Ryan Veeder (2011), a young man
plans on making a big mistake, but thinks better of it.
Recommended for older kids, sixteen and
up. (Available at the Interactive Fiction
Archive, http://www.ifarchive.org)

33. At the Bottom of the Garden by Adam Biltcliff, a
comic tale of an invasion by miniature dragons
(Available at the Interactive Fiction Archive,
http://www.ifarchive.org)

http://parchment.googlecode.com/svn/trunk/parchment.html?story=http://parchment.toolness.com/if-archive/games/zcode/orion.z5.js
http://www.ifarchive.org/
http://www.ifarchive.org/
http://www.ifarchive.org/

 372

34. Arrival by Stephen Granade, funny sendup of low-
budget science fiction movies (Available at the
Interactive Fiction Archive, http://www.ifarchive.org)

35. Plantefall by Steve Meretzsky, a comic science
fiction story with some tough puzzles, good for high
school (Available in Masterpieces of Infocom)

36. Zork III by Marc Blank and Dave Lebling, a fantasy
story with interesting character interaction. (Available
at http://www.csd.uwo.ca/Infocom/games.html)

37. Sherlock: the Riddle of the Crown Jewels by Bob
Bates, a complex mystery with a realistic map of
Victorian London (Available in Masterpieces of
Infocom)

38. MythTale by Temari Seikaiha, a clever blending of
several Greek myths (Available at the Interactive
Fiction Archive, http://www.ifarchive.org)

http://www.ifarchive.org/
http://www.csd.uwo.ca/Infocom/games.html
http://www.ifarchive.org/

 373

39. Worlds Apart by Suzanne Britton, an extraordinarily
rich fantasy story for skilled readers (Available at the
Interactive Fiction Archive, http://www.ifarchive.org)

40. The Meteor, the Stone, and a Long Glass of Sherbet
by Graham Nelson, a funny and cohesive fantasy tale
(Available at the Interactive Fiction Archive,
http://www.ifarchive.org)

41. You've Got a Stew Going by Ryan Veeder (2011),
funny tale with a rat progagonist. (Available at the IF
Archive and at the IF Database.)

42. Spider and Web by Andrew Plotkin, a spy story with
an unusual plot structure and theme, ideal for skilled
readers (Available at the Interactive Fiction Archive,
http://www.ifarchive.org)

http://www.ifarchive.org/
http://parchment.googlecode.com/svn/trunk/parchment.html?story=http://parchment.toolness.com/if-archive/games/zcode/sherbet.z5.js
http://www.ifarchive.org/
http://parchment.googlecode.com/svn/trunk/parchment.html?story=http://parchment.toolness.com/if-archive/games/zcode/Tangle.z5.js
http://www.ifarchive.org/

 374

43. Wetlands by Clara Raubertas, a rather difficult
fantasy story with lots of atmosphere (Available at the
Interactive Fiction Database (http://ifdb.tads.org)

44. Moon-Shaped by Jason Ermer, a compelling,
somewhat Gothic fairy tale. Though sad and intense,
this story is accessible to a good many teenagers.
(Available at the Interactive Fiction Archive,
http://www.ifarchive.org)

45. Zork II by Marc Blank and Dave Lebling, a
challenging fantasy treasure hunt with an amusing
wizard character (Available in Masterpieces of
Infocom)

46. Hoist Sail for the Heliopause and Home by Andrew
Plotkin (2010), a graceful space-exploration fantasy.
Best for older students who have some literary-
analysis skills. (Available at the Interactive Fiction
Archive and the Interactive Fiction Database.)

47. Beyond Zork by Brian Moriaty, a detailed and

http://iplayif.com/?story=http://if1.home.comcast.net/Wetlands.gblorb
http://www.ifarchive.org/

 375

difficult fantasy tale, with some options for shaping
the player-character, good for high school (Available
in Masterpieces of Infocom)

48. It by Emily Boegheim (2011) Read an appealing
story and learn to play “sardines.” (Available at the IF
Archive and at the IF Database.)

49. The Beetmonger’s Journal by Scott Sharkey, well-
written, enjoyable tale of archeology (Available at the
Interactive Fiction Archive, http://www.ifarchive.org)

50. Tales of the Traveling Swordsman by Mike Snyder, a
swashbuckling adventure with a twist at the end
(Available at the Interactive Fiction Archive,
http://www.ifarchive.org)

51. Six by Wade Clarke (2011), playful story with a six-
year-old protagonist. Second Place in the 2011 Fall IF
Competition. (Available at the IF Archive and at the IF
Database)

http://www.ifarchive.org/
http://www.ifarchive.org/

 376

Chapter 21 – A Classic Interactive Fiction: Arthur:
the Quest for Excalibur

 Arthur, the Quest for Excalibur is a great story for

kids. It has an exciting plot, enthralling characters,
clever puzzles, and lively humor. It even helps kids
learn about British history and the King Arthur
legends, which they often have to study in school
anyway. And the story boasts on-line mapping,
helpful hints, and fascinating notes, which appear in
the hint menu at the end of the story.

 377

 Though Arthur does provide on-screen mapping, as

shown above, some kids may find more extensive
maps of stories’ settings fun to use. However, such
maps give away the solutions to some problems.

 Here are the maps, covering almost all of the

locations in the story. These maps contain some
“spoilers.” In other words, they convey some
information that gives away some information that
you might not want to have before you read. For this
reason, you may not want to look at the maps until
you need them.

 378

 379

 380

 One map that you should not see is in advance is a

map of the maze-like badger’s den, since the
principal problem in this part of the story is to map the
maze. Such a map is not too hard to make, once you
discover one special secret. The directions “up” and
“down” are especially important in the maze.

 381

 Here’s the web address of an excellent

walkthrough, which includes directions for getting
through the maze:
http://www.gamefaqs.com/pc/564481-arthur-the-
quest-for-excalibur/faqs/1630

http://www.csd.uwo.ca/Infocom/Solutions/arthur.txt
http://www.gamefaqs.com/pc/564481-arthur-the-quest-for-excalibur/faqs/1630
http://www.gamefaqs.com/pc/564481-arthur-the-quest-for-excalibur/faqs/1630

 382

Chapter 22 – A Funny Tale of Adventure: The
Firebird

 1998 was a great year for interactive fiction. It
produced a variety of good stories by a number of
authors, including three extraordinary works for
adults, Spider and Web by Andrew Plotkin, Once and
Future by Kevin Wilson, and Photopia by Adam
Cadre.

 Fortunately for kids, the good news didn’t stop

there. Bonnie Montgomery’s The Firebird, a great
story for kids and grownups, appeared in the same
year.

 The Firebird retells a famous Russian folk tale in an

adventurous and humorous way. It offers puzzles that
are fair, enjoyable, and not too difficult; and it gives
the reader several possible ways to a favorable
ending. In addition, it develops some memorable
characters, especially the Firebird herself; raises
interesting questions about the roles of women in
fairy tales; and helps us to understand the story on

 383

which one of our most famous twentieth-century
ballets is based.

 You can download the story and read a

walkthrough, using links at the IF Database
(http://ifdb.tads.org/viewgame?id=d9h1r3d920ap8ajf)

 Below, you’ll find some maps for The Firebird.
These maps give away the solutions to some
problems, so use them with caution.

The Forest

 384

Civilization

The Rivers

 385

The Mountain

Top of the Mountain

 386

Wilderness Maze

The Island

 387

Chapter 23 – A Middle-School Story: The Enterprise

Incidents

 The Enterprise Incidents: a Middle School Fantasy,
is a story about middle school kids and teachers. Its
puzzles are fairly easy, though its reading level can be
challenging at times. The Enterprise Incidents was
written by Brendan Desilets, the author of this book,
with lots of help from beta testers Sophie Fruehling, Jeff
Nassiff, Matt Carey, and Sean Desilets. Hints and a
walkthrough are available within the story.

 You can download the z-code story file for The
Enterprise Incidents from the IF Database
(http://ifdb.tads.org/viewgame?id=ld1f3t5epeagilfz). The
file is called “enter.z5.” For more information on using a
story file, read the “Obtaining Interactive Fiction” chapter
in this book.

 Or, if you prefer, you can probably read The
Enterprise Incidents on line, using a link that appears on
the IF Database. To save your progress, type "save"
and then bookmark the resulting Web page.

 Another version of "The Enterprise Incidents"
includes some on-screen maps and other graphical
elements. The filename for this version is
“enterprise.blb.” You can download the story file for this
version from the IF Database, too. This variation of the
story uses an IF-creation tool called Glulx and requires

http://ifdb.tads.org/viewgame?id=ld1f3t5epeagilfz

 388

an interpreter that is different from the ones used with
other stories featured on this website. I recommend that
interpreter called Gargoyle (http://ccxvii.net/gargoyle/).
It's free, and it's available for Windows, Mac, and Linux.

 The pictures and maps that appear below may add
to your enjoyment of the story, if you are reading the z-
code version. The pictures appear in the Glulx version.

The mural in the cafeteria, where the story begins

A candy gram card

 389

A decorated locker

A math cake from Ms. Garrulous' class

The cover of Ed Dibbles' science folder

 390

Meghan Mascaras' science folder

A poster from outside the office. Fishing is cancelled

because of Mr. Pisces' need for a bone-marrow
transplant.

An art project by Silas Gibber

 391

Jim Hastely's riddle poem

A Map of the North-South Hall

 392

A Map of the East-West Hall

To reach the North-South Hall,
go southeast from the hall

near the Office.

 393

Chapter 24 – IF at Its Comic Best: Lost Pig, and
Place Under Ground

 When you look at lists of the best IF stories ever,
you often find, near the top, some long and serious
works, like Andrew Plotkin's Spider and Web, Brian
Moriarty's Trinity, Blue Lacuna by Aaron Reed, and
Savoir Faire by Emily Short. But you also find one brief
and funny story, in which you play the part of an orc who
speaks broken English. This story is called Lost Pig,
and it was written by a person whose pen-name is
Admiral Jota. In 2007, when it first appeared, Lost Pig
won the fall IF Competition, and it later took prestigious
XYZZY Awards for Best Game, Best Writing, Best
Individual Non-Player Character, and Best
Player/Character.

 Critics of all ages have praised the story in nearly
every possible way. Some love the way it
accommodates just about any response a player tries,
even some very unlikely ones. (Try “Burn pants” or
“Burp.”) Others can't get enough of Grunk himself, a
person of endless good nature and bad grammar, who

 394

always makes himself perfectly clear. Many laugh out
loud at Grunk's “opposite number,” a highly-cultured
gnome who learns, it seems, a renewed sense of
purpose from his new orc acquaintance. And even the
pig has its own funny, “trickster” personality.

 Kids a appreciate Lost Pig as a tale for all ages. The
IF Database quotes a review by Racquel and Liza, aged
ten, from Massachusetts in the USA.

 “It was very fun and exciting and I liked the
characters, especially Grunk. I liked the part with the
bread machine. I also liked that whatever you ordered
Grunk to do he did, including burping. I also liked that
one thing led to another and you had to do things in
order to solve the game."

 "I enjoyed how the game felt realistic, like it really
was happening. The gnome dude was really cool and
nice. It's not like you can talk to a gnome every day! I
also enjoyed the fact that you had to be precise on your
commands. I thought it was cool that you had to say
exact directions... not like right,and left. More of
N,NW,NS,E,SW,SE,S,AND WEST. It was an awesome
game. I hope there are other games with Grunk
included!!!!!!”

 395

 Lost Pig takes place within a fairly small area, but
the map that appears below may be helpful, anyway.
Some very important clues appear in drawings that
appear on the walls in the “Place Under Ground.”
Grunk's descriptions of these drawings appear below,
too.

 The Pictures on the Walls

Curtain in Fountain Room: Look like big rug, but it
on wall instead of floor, so that make it curtain
instead. Curtain have big picture of little man on it.
Grunk think little man maybe called "gnome." Him
holding burning torch in dark cave. Point at way out
of cave.

 396

West Wall in Statue Room: Picture have big pile of
black powder. Powder all on fire. Picture have
bucket of water, too. Bucket pouring water onto fire.
Grunk guess that water for making fire go out.

East Wall in Statue Room: Picture have long purple
pole that go from side to side. All around pole, there
different yellow thing that float in air, like honey and
bottle of beer and pretty flower and lots of other
thing too. Under that, there picture of pie. Mmm, pie.

Pie cut up into more than seven piece, and every
piece have different color. Purple piece at top. To
right of purple piece there orange piece, then there
white piece at right side, then there red piece, and
then yellow piece at bottom. Next piece blue, then
there black at left side, and then green piece, and
then it back to purple piece again at top. Grunk
think red piece look most tasty.

 397

A Color Wheel, Similar to the One Described in Lost
Pig

 398

Lost Pig: a Walkthrough for Beginners

 This walkthrough may help beginners get started
with interactive fiction, using the story Lost Pig and
Place Under Ground, by Admiral Jota. In this story the
reader plays the part of an ogre-like creature called an
orc. The orc's name is Grunk, and he speaks broken
English. He communicates very well, though.

 When the story begins, the reader sees the
following text:

Pig lost! Boss say that it Grunk fault.

Say Grunk forget about closing gate.

Maybe boss right. Grunk not remember

forgetting, but maybe Grunk just forget.

Boss say Grunk go find pig, bring it

back. Him say, if Grunk not bring back

pig, not bring back Grunk either. Grunk

like working at pig farm, so now Grunk

need find pig.

Lost Pig

And Place Under Ground

Release 1 / Serial number 070917 / Inform

v6.30 Library 6/11 S(For help, use

"HELP".)

Outside

 399

Grunk think that pig probably go this

way. It hard to tell at night time,

because moon not bright as sun. There

forest to east and north. It even darker

there, and Grunk hear lots of strange

animal. West of Grunk, there big field

with little stone wall. Farm back to

south.

>

 That “greater than” sign, which looks like “>,” is very
important in interactive fiction. It signals the reader that
it time for him or her to tell the main character what he
or she should try to do. You could think of the “>”
symbol as meaning “I would like the main character in
the story to try to...”

 Mostly, an interactive fiction story understands only
a few kinds of sentences. Some of the sentences that
would usually work are:
LOOK AT ME
LOOK AT THE FOREST
GO NORTH
GO SOUTH
INVENTORY (that is, list what the character is carrying)
WAIT

 Let's try some of these sentences in Lost Pig.

 400

>GO SOUTH

>GO EAST

>GO WEST

>GO NORTH

 It seems that Grunk is not going to go very far into
the darkness, even with his torch, unless he can get a
better idea of where the pig might be.

 Let's try some of the other ideas we've listed above.

>LOOK AT FOREST

>LOOK AT FARM

>LOOK AT ME

>INVENTORY

 “Inventory” (abbreviated “i”) gives us a list of what
Grunk is carrying. By chance, in this case, it gives us an
indication of how we might get a better idea of where
the pig is. Grunk can't see the pig, but he can hear a
sound that the pig may have made.

>LISTEN

 It seems that the pig may be off to the northeast.
>NE (An abbreviation for “GO NORTHEAST”)

 Well, it seems that Grunk's unwillingness to wander

 401

around in the dark made some sense. Even so, Grunk
seems uninjured after his fall into the hole, so let's grab
our torch and look around. We'll use the abbreviation
“X” for “EXAMINE.”

>TAKE TORCH

>X STAIRS

>TAKE THING

>X THING

 Experiment a bit to see if you can find out what the
“thing” might be used for. Then we'll look explore some
more. But, first, courtesy of the People's Republic of
Interactive Fiction and noted author Andrew Plotkin,
here's a postcard that you may find helpful.

 402

 And now, back to our walkthrough.

>E (Abbreviation for “GO EAST”)

 You may find the lost pig here. And, if you don't,
you'll find it soon. When you find the pig, try to catch it.

>TAKE PIG

>CHASE PIG

 It looks as though we can't catch the pig just yet, but
this might be a good time to think of a strategy for

 403

grabbing it. Perhaps some sort of distraction...

>X FOUNTAIN

 By now, you may have noticed that, in interactive
fiction, it's a good idea to examine practically everything.
But sometimes mere examining isn't enough.
Sometimes, we'll need a more exact kind of looking.

>LOOK IN FOUNTAIN

 We now have a coin, so we should be looking for
opportunities to use it. Also, the story is apparently
continuing to keep a score, as we've just earned our
second point. Not all IF stories keep a score, though.
 It's time for a bit more exploring.

>SW

>LOOK AT BOX

 What could this box be? Try to figure it out. It's
important.

>TAKE CHAIR

 In interactive fiction, it's often good to take anything
that's not nailed down, unless there's a clear reason not
to.

 404

 But what is that box?

>PUT COIN IN SLOT

>PULL LEVER

>TAKE BRICK

>X BRICK

>EAT BRICK

 Maybe this edible “brick” is a way to distract the pig.
Let's try it.

>NE

>DROP BRICK

>WAIT

>Z (An abbreviation for “WAIT”)

 Well, the brick did seem to distract the pig a bit, but
it seems that one brick is not enough. Can we get
more? Remember the dents on the vending machine?
How could those have happened?

>SW

>HIT BOX

>TAKE COIN

>PUT COIN IN SLOT

>PULL LEVER

>TAKE BRICK

>HIT MACHINE

>TAKE COIN

 405

>PUT COIN IN SLOT

>TAKE BRICK AND COIN

>PUT COIN IN SLOT

>TAKE BRICK AND COIN

 Let's see if we can use our supply of bricks to catch
the pig.

>NE (You may have try some of the other

locations to find the pig.)

>DROP BRICK

>WAIT

>Z

>Z

>DROP BRICK

>Z

>TAKE PIG

 With enough bricks, Grunk can feed the pig until it
becomes distracted enough to catch, and so, in our
walkthrough, we have solved one of the main puzzles in
the story. Other readers might not solve this problem
until much later.

 Often, in interactive fiction, we find ourselves
working on more than one puzzle at a time. In that way,
IF is a little like real life. As a result, it's important to
keep track of the problems we're working on at any one
time. Some readers even write down the puzzles, so as

 406

not to forget any of them.

 In our walkthrough, Grunk still has to get out of the
hole, and solving this puzzle requires solving several
others, first.. The hole itself, which is really more of an
underground shrine, has some hints to offer, and one of
them is in this room.

>LOOK AT CURTAIN

 Let's look around some more. The order in which
we check out the remaining rooms doesn't really matter
much, but we'll have to explore them thoroughly.

>SE

>OPEN CHEST

>TAKE POLE

 The pole tries to push Grunk away when he tries to
pick it up. He succeeds anyway, but this sort of odd
detail is often important in interactive fiction, so we
should keep it in mind.

>NW

>N

>X STATUE

 This statue has some details that might be worth a
closer look.

 407

>X SHOES

>TAKE SHOES

>X HAT

>TAKE HAT

 We should also have a look at the pictures on the
wall in this room.

>X EAST WALL

>X PIE

>X WEST WALL

 Now, we've seen three wall pictures, all of which
look important. Reviewing quickly, we find these
descriptions of the pictures:

Curtain in Fountain Room: Look like big rug, but it
on wall instead of floor, so that make it curtain
instead. Curtain have big picture of little man on it.
Grunk think little man maybe called "gnome." Him
holding burning torch in dark cave. Point at way out
of cave.

West Wall in Statue Room: Picture have big pile of
black powder. Powder all on fire. Picture have
bucket of water, too. Bucket pouring water onto fire.
Grunk guess that water for making fire go out.

 408

East Wall in Statue Room: Picture have long purple
pole that go from side to side. All around pole, there
different yellow thing that float in air, like honey and
bottle of beer and pretty flower and lots of other
thing too. Under that, there picture of pie. Mmm, pie.

Pie cut up into more than seven piece, and every
piece have different color. Purple piece at top. To
right of purple piece there orange piece, then there
white piece at right side, then there red piece, and
then yellow piece at bottom. Next piece blue, then
there black at left side, and then green piece, and
then it back to purple piece again at top. Grunk
think red piece look most tasty.

The “pie” sounds like a standard color wheel,
similar to the one below, except that Grunk's has
the purple piece at the top.

 409

>S

>E

>LOOK AT THING

 This might be a chance to use one of the items
we're carrying to solve a puzzle.

>TAKE THING WITH POLE

 Now, Grunk has solved the puzzle of getting the red
thing, a key, which might be the solution to another
problem, the locked chest in the shelf room. We also
have another example of the odd behavior of the green
pole, which repels Grunk but attracts the red key.

>W

>SE

>OPEN CHEST

 Now we have a chest full of powder, which looks a
lot like what we saw on the west wall in the statue room.
Could it be that the water in the picture was not really
putting out the fire?

 This would be a fine time to put aside this
walkthrough and try to solve some problems on your
own for a while. You might start with re-lighting the

 410

torch.

>NW

>E

>FILL HAT WITH WATER

>W

>SE

>POUR WATER IN CHEST

>LIGHT TORCH

 Grunk has now explored almost all of the important
locations in the story. With a lighted torch, he might be
able to get a better look at one or two of them.

>W

>TALK TO GNOME

>TELL GNOME ABOUT GRUNK

>ASK GNOME ABOUT THIS PLACE

>ASK GNOME ABOUT ALCHEMIST

>ASK GNOME ABOUT INVENTION

>ASK GNOME ABOUT GNOME

>ASK GNOME HOW LONG GNOME HERE

 411

 We've now visited all the major locations in the

story. Even in a story like this one, which has only a few
rooms, some readers like to make a map.

 We've also encountered a gnome has quite a lot to
say, in perfect, standard English. In fact, the depth of his
ability to converse is one of the many strong points of
Lost Pig.

 Notice that we started the conversation off with
“TALK TO GNOME.” “TALK TO” works in many, though
not all, interactive fiction stories. Once we get the
conversation started, the story gives us hints about what
we might have Grunk say next. Even in stories that
don't use “TALK TO,” a command like “ASK GNOME
ABOUT ALCHEMIST” will often work.

 412

 It looks as though the gnome is looking for a book.
Maybe we can help him out.

>E

>X SHELF

>DROP CHAIR

>STAND ON CHAIR

>LOOK AT TOP SHELF

>TAKE BOOK

>GO DOWN

>W

>GIVE BOOK TO GNOME

>TALK TO GNOME

 Apparently, Grunk has returned the right book but
there's a page missing. By poking around a bit with a
lighted torch, we can find that page.

>W

>NE

>W

>X CRACK

>TAKE PAPER WITH POLE

Grunk stick pole into crack and poke

paper with end of it. But nothing special

happen.

 Grunk’s pole, in its present state, won't help to
retrieve the missing page. How might we change the

 413

pole to make it attract the white paper? Think about
colors and magnetism. Put away this walkthrough for a
while and try to figure it out.

SPOILER SPACE INTENTIONALLY LEFT BLANK
HERE

>BURN POLE

>TAKE PAPER WITH POLE

>E

>SW

>E

>GIVE PAPER TO GNOME

>TALK TO GNOME

 The gnome seems appropriately grateful, but there's
no obvious way he can help us right now. Let's work on

 414

another problem, the problem of finding a way out of the
hole. Remember the picture on the curtain in the
Fountain Room?

>W

>NE

>N

>PUT TORCH IN HAND

 This certainly looks promising. Let's try to get out
through the formerly-secret door.

>TAKE TORCH

>N

>N

>N

 Grunk has found a cave that may be the way out of
the hole/shrine, but the tunnel is so windy that he can't
use his torch there. Where can he find a source of light
that won't blow out? Maybe he should re-light the torch
first.

>S

>S

>E

>FILL HAT WITH WATER

>W

>SE

 415

>POUR WATER ON POWDER

>LIGHT TORCH

>W

>ASK GNOME FOR BALL

>GIVE TORCH TO GNOME

 With his new light source, maybe Grunk can escape
from the underground shrine.

>W

>NE

>N

>N

>N

 It seems that Grunk is hopelessly lost in a maze of
tunnels! However, Admiral Jota is not going to make the
reader map a huge web of rooms here. Actually, almost
anything we try to call for help will work.

>BLOW IN TUBE

>SE

>D

>S

Forest

Hey, Grunk outside again! Yay! It still

night time, but Grunk have light, so that

OK. This look like it near place Grunk at

 416

before. Farm not far at all from here.

Just little way to southwest.

Gnome here, waiting for Grunk.

Gnome take trunk back from Grunk. "I

think this is where we part ways," him

say. "You can probably find your way back

to the farm from here." Gnome shake Grunk

hand. Then gnome say, "Remember the name

Zugilbor Galrogginpots sem Endali dec

Frebensalbibit. This won't be the last

time you hear it."

Then gnome go one way and Grunk go other

way. It not long before Grunk back at

farm. Boss already sleeping, so Grunk put

pig back quiet and go to bed. Tomorrow,

maybe boss proud of Grunk.

 *** Grunk bring pig back to farm

Grunk have 6 out of 7 that time.

Time for Grunk to RESTART or RESTORE a

saved story or UNDO what Grunk just do or

 417

tell FULL score or look at MENU (with

different silly thing Grunk can try

doing) or just QUIT?

 Now, see if you can figure out how to get that “last
lousy point”!

 418

Chapter 25 – Writing Interactive Fiction With Adrift

 Writing your own interactive fiction can be an
enjoyable challenge. Three of the best authoring
systems for IF are called Inform 7, Quest, and Adrift. All
are free of charge.

 Below, you’ll find an introduction to creating
interactive fiction with Adrift. You can find introductions
to Inform 7 and Quest later in this book.

 Would you like to try writing some interactive fiction
without leaning to use a programming language? A
Windows-based software tool called Adrift Developer
makes it possible for you to do so with very little fuss.
Adrift Developer costs nothing and is available on the
Web at:
http://www.adrift.org.uk/

 Adrift works best for stories that are fairly simple
and straightforward. For such stories, Adrift is quite
easy to use and requires no computer-programming

http://www.adrift.org.uk/

 419

skills. To make more complicated stories, a writer may
need to learn some programming.

 For the purposes of this tutorial, we'll write an
extremely simple story. Here's a transcript of one user's
experience with this story.

“Lost Chicken” Script

You've made it to your home, as usual,

but it seems that you've forgotten your

key.

Lost Chicken

An Interactive Fiction by Brendan

Desilets

Outside Front Door

You're outside your front door. The door

is to the west, and your front yard is to

the south.

You can see a doormat and an oak door

here.

>take doormat

You find a note under the doormat and

pick it up. Then you drop the doormat.

 420

>read note

The note reads, "The chicken hides the

spare."

>s

South Yard

This is the lovely south yard of your

home.

You can see a plaster chicken (closed)

here.

>open chicken

You open the plaster chicken, revealing a

key.

>take key

Taken.

>n

Outside Front Door

You're outside your front door. The door

is to the west, and your front yard is to

the south.

You can see a doormat and an oak door

 421

here.

>w

You unlock the door and enter your house.

Front Hall

You have made it inside. Congratulations!

 *** The End ***

 422

An Adrift Tutorial

 When Adrift Developer starts, it usually displays five
windows. The windows are labeled “Rooms,” “Objects,”
“Tasks,” “Events,” and “Characters.”

Use these steps to get started with Adrift Developer:

 1. Start the computer program called Adrift

Developer. Click on the “Home” tab at the top of
the screen, if that tab is not already selected.

 2. Click on “Options” and then on “Bibliography.”
Type in the title of your piece of writing and your
name, in the right spaces. Then, click on OK.

 3. In the “Characters” section of the Adrift
 Developer screen, you'll notice that one
 character, the player/character, has already been
 created. Double-click on the word “Player,”
 and type in the name of your player/character.

 423

 Then type a brief description of your
 player/character in the appropriately-labeled
 space. Click on the right gender for your
 player/character, male or female. Then click on
 OK.

Create your first location

1. On the Adrift Developer screen, find the section
 labeled “Add Items.” In this section, click on
 “Location.”

 2. In the form that opens, fill in the “short name” of
 the room. This name should be three words or
 fewer in length. For our “Lost Chicken” story, we'll
 use “Outside Front Door” as the short name of our

 424

 first location.
 3. Then, in the appropriate space, fill in the “long

 room description.” You can copy and paste the
 long description from your word processor, if you
 like. For our long description of “Outside Front
 Door,” we'll use “You're outside your front door.
 The door is to the west, and your front yard is to
 the south.”

 4. Click on “OK” when you have finished with this
 form.

 5. You can use the same procedure to make more
 rooms. For “Lost Chicken,” we'll create two more
 locations, “Front Hall” and “South Yard.” We won't
 need a long description for “Front Hall.” Our long
 description of “South Yard” will be “This is the
 lovely south yard of your home.”

 6. Double-click on “Outside Front Door,” from your
 list of locations. In the form that opens, click on
 the “Directions” tab. Using dropdown menus that
 appear, indicate that going west from “Outside
 Front Door” will take the player/character to “Front
 Hall” and that going south from “Outside Front
 Door” will take the player/character to “South
 Yard.” When you've indicated these directions,
 Adrift may ask if you want these directions to work
 both ways. In other words, Adrift may ask whether
 going east from Front Hall should lead to “Outside
 Front Door” and whether going north from “South
 Yard” should bring the player/character to “Outside

 425

 Front Door.” For our story, we can allow both of
 these two-way pairs.
 7. Adrift will show a map of the rooms you've
 created.

Save and Test Your Story, So Far

1. Though Adrift is a solid and mature program, it
is important so save your work frequently. It's a
good practice to save several versions of your
work, in case something goes wrong with your
latest saved version.

2. To save your story, click on the circular icon in
the top left of the screen, and choose “Save
As.”

3. To test your story, click on the green triangle in
the top center of the screen. This triangle is
labeled, “Run Adventure.” Adrift Runner will
open and display your story. Your
player/character should be able to move
between the rooms you've created.

 426

Create your first “object.”

 1. From the “Add Items” list, choose Object.
 2. In the form that opens, type in the name of the
 object. In our example, we'll create the doormat as
 our first item. Using the buttons and dropdown
 menus, indicate that this object is “dynamic” and
 that its initial location is “Outside Front Door.” A
 dynamic object is an item that the player/character
 can pick up.
 3. Then, in the “name” box, type “doormat” and then
 press the Enter key. Next, type “mat.” Now, we've
 signaled that we want to create an object named
 “doormat,” which the user can also refer to as “mat.”
 4. Next, type in the description of the object.

 427

 5. Click on the Properties tab, and indicate that the
 object should be mentioned in room descriptions.
 6. Click on “OK.
 7. You can use the same procedure to make more
 objects.

Create more objects.
 1. Next, let's create the object called the “note.” This
 object will be similar to the doormat, except that its
 location will be “hidden.”
 2. Now, let's create, or “implement,” the plaster
 chicken, which will contain the
 key. This object will be similar to the others, but with
 several differences.
 1. It will be static, rather than dynamic.
 2. It will be in the South Yard.
 3. Its properties, accessed through the
 “properties” tab, will specify that
 1. it is a container,
 2. it can be opened and closed,
 3. it is closed, and
 4. it should be included in room
 descriptions.
 3. Finally, let's implement the key. It will be a
 dynamic object, and its initial location will be inside
 the plaster chicken.

 428

Set the Opening and Closing Text
 1. Click on the circular icon that appears in the top
 left corner of the Adrift
 Developer screen. From the menu that opens,
 choose “Introduction & End of Game.”
 2. The page that opens will have two tabs, one for
 the opening of the game and one for its ending.
 3. The “Introduction” tab allows for the creation of
 opening text, for specifying the story's first location,
 and for displaying, or not displaying, the description
 of the opening location.
 4. Fill in the opening text that you'd like to show at
 the start of your story, something like, "You've
 arrived at your home as usual, but you've forgotten

 429

 your key."
 5. This would be a good time to save and test your
 story, so far.

Create your first “task.”

 1. A task is an action that the player/character must,
 or may, take to produce a certain result. Adrift has
 lots of built-in tasks, such as picking up an object,
 but you'll want to create your own, too. Tasks that
 you create generally override Adrift's built-in tasks.

 430

 Tasks can be a bit complicated, but they're
 necessary.
 2. Our first example of a task will implement what
 happens when the player/character first takes the
 doormat, thus revealing the note. Recall that, when
 we created the note, we placed it in the “location”
 called “hidden.” In other words, it's not anywhere in
 the story's world until we bring it in.
 3. In the “Add Items” section at the top of the
 screen, click on “Task.” A fairly complex window will
 open.
 4. With the Description tab selected, type in a name
 for the task. We'll use “Take Doormat.”
 Our “Task Type” will be “General.” (We could also
 implement this task as “Specific,” but, if we did, we
 would not be able to introduce the action called
 “move,” which Adrift does not normally understand.)
 5. In the box labeled “Enter any number of
 commands,” type in all of the commands that the
 reader will be able to use to activate the task. Put
 one command on each line. In our case, we'll list
 these commands:
 take mat
 take doormat
 move mat
 move doormat
 6. In the box labeled “Message to display on
 completion,” type something like “When you move
 the doormat, you find a note underneath it. You pick

 431

 up the note and leave the mat where you found it.”
 7. Since we want the note to be revealed only once,
 uncheck the box that's labeled “Task is repeatable.”
 Then click on “Apply.”
 8. Click on the “Restrictions” tab. Here we'll indicate
 what conditions must be met for the task to do
 whatever it does. In this case, our only restriction
 will be that our character must be in the location
 called “Outside Front Door.”
 9. However, as of this writing, the screen that you're
 looking at right now is a little buggy. It displays a
 large box, currently blank. When you create
 restrictions, the box is supposed to display them. It
 should also allow you to change the order in
 which the restrictions are applied and to edit each
 restriction by clicking on it and then on an “Edit”
 button. However, when you've created a restriction,
 even if you make no mistakes in doing so, the
 restriction usually does not appear in the large
 box. To find out if the restriction is really in effect,
 you usually have to close the whole task-creation
 window by clicking on the “OK” button at the
 bottom of that window. When you do, you'll see that
 the name of your task appears on the “Task” list on
 the main screen of Adrift Developer. If you
 double-click on the name of your new task on the
 task list, and then on the “Restrictions” tag, the large
 box will list all the restrictions that you've created,
 just as it was supposed to all along. A bit later in this

 432

 tutorial, when we create actions for a task, you'll
 work with a very similar big box that lists the actions
 that you've created. This box exhibits the same bug.
 9. With the “Restrictions” tab open, click on “Add.”
 Using the dropdown menus that appear, create the
 restriction that the player/character must be in the
 “Outside Front Door” location. Click on “OK” and
 then on “Apply.” You should now see your
 newly-made restriction in the previously-blank list on
 the “Restrictions” tab. Your restriction should read,
 somewhat awkwardly, “The Player's Location
 must be location location 'Outside Front Door'"

 433

 10. Click on the “Actions” tab and then on “Add.”
 11. Use dropdown menus to construct an action that
 moves the note from “Hidden” to “Held by the
 player.” Click on “OK” and then on “Apply.”
 12. Your action should now appear on the
 previously blank list of actions, in the odd but useful
 form, “Move object 'a note' to held by character
 'Player'"
 12. Click on “OK” until the “Task – Take Doormat”
 window closes.

 434

Create a task that ends the story
 1. From the “Add Items” Section, click on “Task.”
 We'll call this task “Enter Front Hall.”
 2. This task will not require that we introduce any
 new verbs, and so our task type will be “Specific.”
 3. Using dropdown menus, indicate that the new
 task should “override” “player movement” “go west.”
 4. As a “Message to display on completion, use
 something like “You open the door and walk
 through it.”

 435

 5. Click on the “Restrictions” tab. Click on “Add.”
 6. Using the dropdown menus create the restriction,
 “The Player's Location must be location location
 'Outside Front Door'"
 7. Click on “OK,” and “Apply.”
 8. Again, click on “Add” in the “Restrictions” tab.
 Using the dropdown menus, create the restriction,
 “Object, 'a key' must be held by a character 'player'”
 9. Click on “OK” and “Apply.”
 10. Click on the “Actions” tab.
 11. Click on the “End Game” tab, and choose “In
 Victory.”

Save and Test Your Story
 1. To save your story, click on the circular icon in the
 top left of the screen, and choose “Save As.”
 2. To test your story, click on the green triangle in
 the top center of the screen. This triangle is labeled,
 “Run Adventure.” Adrift Runner will open and display
 your story. Your player/character should be able to
 work through the entire story.

 436

A challenge to try on your own
 1. Implement the door, as mentioned in the
 transcript.
 2. The Adrift Manual Wiki (http://wiki.adrift.co)
 explains how to create a fully-featured door, but you
 could get away with something much simpler in this
 story.

 437

Chapter 26 -- Writing Interactive Fiction With Quest

 Quest offers a way to create interactive stories with
very little programming. Like Adrift, Quest works mainly
though a series of windows and drop-down menus.
Originally, Quest was, like Adrift, a Windows-only
application, and, as of February 2015, its Windows
version remains its most complete version. However,
Quest comes in a Web version, too, and we'll use the
Web variation for this tutorial, since it's more widely
available. Still, if you have a Windows computer, you
should use the Windows version of Quest. It's more
mature, less buggy, and more complete, but it works
very much like what you'll see in this tutorial. In our
Quest tutorial, we'll implement the super-simple story
“Lost Chicken,” which we also used in our chapter on
writing IF with Adrift. Here's a transcript of the story:

“Lost Chicken” Script

You've made it to your home, as usual,

but it seems that you've forgotten your

 438

key.

Lost Chicken

An Interactive Fiction by Brendan

Desilets

Outside Front Door

You're outside your front door. The door

is to the west, and your front yard is to

the south.

You can see a doormat and an oak door

here.

>take doormat

You find a note under the doormat and

pick it up.

>read note

The note reads, "The chicken hides the

spare."

>s

South Yard

This is the lovely south yard of your

home.

You can see a plaster chicken (closed)

 439

here.

>open chicken

You open the plaster chicken, revealing a

key.

>take key

Taken.

>n

Outside Front Door

You're outside your front door. The door

is to the west, and your front yard is to

the south.

You can see a doormat and an oak door

here.

>w

You unlock the door and enter your house.

Front Hall

You have made it inside. Congratulations!

 *** The End ***

 Quest’s Web version is at

 440

http://textadventures.co.uk/quest. In order to create a
story with the Web version of Quest, you first have to
set up an account at the Quest website.

Set Up Your Story

1. Log in to your Quest account and click on the
“Create” button at the top of your screen.

2. Click on “Create a New Game.”
3. In the “Game name:” box, type in the title of your

story. Your “Game Type” is “Text Adventure.”
4. Click on “Create.”
5. Click on “Start editing!”
6. Wait around for a minute or two. Like many Web

applications, Quest can be a bit slow to execute.
7. Quest will open with a screen that looks like this:

http://textadventures.co.uk/quest

 441

8. Notice that the word “game” is highlighted on the
diagram that appears on the left side of the screen.
That diagram is important, and we'll have to monitor
it carefully as we go along.

9. Fill in the information that's asked for on the “Setup”
tab. Feel free to examine and even experiment with
the other tabs if you wish, with the exception of the
“Player” tab. It's best to leave that one as it is, in
order to head off possible buggy behavior.

Improve Your First Room

1. You may have noticed, in the chart on the left of
the screen, that Quest has already created a

 442

room for you and placed the player/character in
that room.

2. Click on the word “room” in the chart at the left.
Do not click on the button labeled “+ Room” at
the top of the screen. We'll use that one later.

3. A screen that looks like this will open:

In the screen that opens, fill in the name of the
opening room, in our case “Outside Front Door.”

4. As an “alias” use something like “outside your
front door, which lies to the west.”

5. Click on the “Room” tab and fill in a description,
such as “This is a grassy area outside your front
door, which lies to the west.”

6. We'll use the other tabs later. For now, click on
the “Save” icon at the upper right corner of the
screen, unless Quest has already greyed it out,
indicating that the story is already saved.

 443

7. In addition to saving your story, you'll want to
download it occasionally as your project gets
larger. Downloaded versions of you story are
excellent insurance, in case something goes
wrong with your on-line copy.

8. The downloaded stories will require the full
Quest program, a Windows-only tool, for editing
them. However, in the case of a complex story,
most users will be better off with the Windows
program anyway, as it's faster, more complete,
and more reliable.

Add Two More Rooms

1. Click on the word “game” in the chart at the left
of the screen. Make sure that the word “game is
highlighted, as we want our additional rooms to
be inside the game, but not inside anything
else.

2. Click on the “+ Room” button at the top of the
screen.

3. Fill in the “Name” as “South Yard” and the
“Alias” as something like “a lovely yard, south of
your home.”

4. Click on the “Room” tab and fill in the
description text, “This is the lovely South Yard of
your home.”

5. Click on the “Exits” tab. Since we want the
player to go north from here to Outside Front
Door, click on the circle beside the word “North.”

 444

When you've done so you'll see a dropdown
menu labeled “Create an exit to:” Use this
dropdown menu to select “Outside Front Door.”

6. We want this exit to work in both directions, so
check the box that is labeled “Also create exit in
other direction.”

7. Once again, click on the word “game” in the
chart that appears at the left of the screen. Click
on the “+ Room” button at the top of the screen.

8. This time, we'll name the room “Front Hall,” and
we'll give it the alias “cozy front hall of your
home.”

9. We'll not use the “default prefix” for this room.
Instead we'll use the prefix “the.”

10. We won't use the “Room” tab here, but we
will click on the “Exits” tab.

11. With the “Exits” tab open, we'll create a two-
way exit that leads east to “Outside Front Door.”
Later, we'll create a restriction on when the
player can go west from Outside Front Door to
Front Hall.

Try Out Your Story, So Far
 1. Click on the “Save” button in the upper
 right part of the screen, unless the button is
 already greyed out.
 2. Click on the “Play” button at the top of the
 screen. After a few seconds, you should see
 you story running, with the player in the

 445

 room called “Outside Front Door.”
 3. You should be able to move around
 through the three rooms you've created.

 4. Occasionally, the Quest game-running
 program seems to spit out odd error
 messages, in response to common IF
 commands. Often, simply trying your
 command a second time will solve the
 problem.

Create Two Objects, the Doormat and the Note
1. New writers of interactive fiction often ask about

how a writer can cause a concealed object to
appear, the way the note appears in “Lost
Chicken,” when the player/character takes the
doormat. Here's one of the several possible
ways to get this effect.

2. First, let's create the note.
3. Click on “Outside Front Door” on the chart that

appears at the left of your screen. You will see
the familiar screen which you used to provide
information about the “Outside Front Door”
room.

4. On this screen, click on the “Objects” tab. A
screen will open, showing that one object, the
player, is already in “Outside Front Door.”

5. In the “Objects” tab, click on “Add.” A screen will
open, allowing you to provide information about
your new object.

 446

6. Give your new object the name “note.” Make its
description, “The note reads, 'The chicken hides
the spare.'"

7. Click on the “Inventory” tab, and indicate that
the new object can be taken.

8. Make sure that the box beside “Visible” is not
checked. The note, in its initial form, will not be
visible to the player, but we'll make it visible
soon.

9. Once again, click on “Outside Front Door” on
the chart at the left of the screen. Then click on
the “Objects” tab.

10. Click on Add.
11. This time, call your object “mat,” and make

its alias “doormat.” Its description should be
something like “an ordinary doormat.”

12. Click on the “Object” tab and then click on
the “+ Add” button that appears beside “Other
Names.” Add the new name “mat.”

13. Click on the “Inventory” tab and indicate that
the mat can be taken.

14. Click on the “Save” button if it's not already
greyed out.

Create Your First Script
 Some Background Concepts

1. Scripts are very important in Quest.
2. Scripts can be quite complex.
3. Scripts allow an author to change the usual

 447

behavior of the game world. For example, in our
“Lost Chicken” story, we can change what
happens when the player/character takes the mat,
causing the note to appear.

4. As we build a script, we will often add other
 scripts to it. It is extremely common for
 an author to start creating a script and then to add
 more and more scripts to it.
5. In order to make the note appear when we want it
to, we'll build a script. These are the characteristics
of that script.

1. It takes place only after the player/character
takes the mat when the note has not yet been
revealed. We don't want the note to
mysteriously reappear every time the
player/character drops mat and picks it up
again.

2. It causes the note to appear.
3. It tells the reader what the previous elements of

the script caused to happen.
 4. We'll build our script, using the “Inventory” tab
 for the object called “mat.”

 Our First Script – the Building Proces
 1. On the chart that appears at the left of your
 screen, click on “mat.”
 2.Click on the “Inventory” tab.
 3. Under “After taking the object,” click on the
 button labeled “+ Add new script.” A popup

 448

 window will open.
 4. Click on the word “If,” which is in the upper right
 part of the popup window.
 5. The word “IF” will appear, followed by a series
 of dropdown menus.
 6. Using the dropdown menus, create an “if”
 clause that reads, “IF: object is not visible object
 note.”

 7. By now, you've probably noticed that the
 screen you're looking at has become pretty
 complicated. For one thing, it contains at least
 three identically-labeled buttons that read
 “+ Add new script.”
 8. One of these “+ Add new script” buttons is
 directly under “If: object is not visible object

 449

 note.” And this particular button is indented a bit.
9. The indenting is intended to show that
whatever command (or “script”) you add using
the indented button will be carried out only if the
note is not visible.
10. This sort of indenting is very important in
creating good scripts. Such scripts often require
placing groups of commands within other
groups of commands, and the indenting is
helpful in keeping all the groups sorted out.
11. Click on the indented button that's labeled “+
Add new script.” A popup window will open.”
12. The defaults that are already selected in the
popup window indicate that you want to print a
message. As a matter of fact, that's a good idea
here, so just click on “OK.”
13. Indicate that the message you want to print
is something like “Moving the doormat reveals a

 450

note.”

14. Notice that there's now a “+ Add new script”
button directly under the word “Print.” Click on
that “+ Add new script” button.
15. This time, on the popup window, select the
“Objects” button and choose “Make object
visible.” Click on “OK.”
16. Now using the dropdown menus, assemble
this command, “Make visible object note.”
17. Your screen should now look like this:

18. Click on “Save” if it's not already greyed out.

 451

Then try out your story so far, using the “Play”
button.

Create Your First Container

 1. IF authoring systems usually have some built-in
 object types. One of these is the
 container, a type of object that can hold other
 objects. In “Lost Chicken,” the plaster
 chicken is a container that has a key in it.
 2. To create the plaster chicken, begin by clicking
 on “South Yard” in the chart on the left side
 of the screen. Then click on the “Objects” tab.
 3. Click on “+ Add.”
 4. A familiar screen for creating an object will
 appear, with the “Setup” tab selected. Fill in the
 name “chicken” and the alias “plaster chicken.” For
 a description, type something like “An old
 plaster chicken, used as a container.
 5. With the “Object” tab depressed, add “chicken”
 as an “other name.”

 452

6. Click on the “Inventory” tab. Make sure that
“Object can be taken” is not checked.

7. Click on the “Features” tab and select
“Container: object is a container or surface, or can
be opened and closed.”
8. A new tab, labeled “Container,” will appear.
Click on this tab, and chose, as the “Container
type,” “Openable/Closable."
9. Then, check “Can be opened,” and “Can be
closed.”

 453

10. Click on the “Objects” tab and then on “+
Add.” Add the object “key,” and fill in its details

in our now-familiar fashion.

11. Try out your story. It should be possible for
the player/character to go south to the South
Garden, open the plaster chicken, and take the
key.

Create a Script That Ends Your Story
 1. Our story ends when the player/character
 gains entry to the Front Hall. It should be
 impossible for the player/character to get to the

 454

 Front Hall unless he or she is carrying the
 key.
 2. We'll use a script to implement this behavior.
 3. In the chart at the left of the screen, locate
 “Outside Front Door,” but don't click on it.
 4. Under “Outside Front Door,” locate “Exit: Front
 Hall,” and click on it.
 5. Put a checkmark beside “Run a script (instead
 of moving the player automatically).”
 6. As we did on our previous script, start by
 choosing “If'” from the upper right part of the
 popup menu, and then build a statement, using
 the dropdown menus that will appear. The
 statement should be, “If player is not carrying
 object object key.”
 7.Once again, you'll see a fairly complex screen
 with a number of buttons labeled “+ Add
 new script.” Pick out the “+ Add new script”
 button that is indented under your “If” clause,
 and click on that button.
 8. Again, a popup window will open, and, as it
 happens, the default behavior, printing a
 message, is what we want. Click on “OK,” and fill
 in the message, “You can't get through
 the door without the key.”

 455

9. Now, we'll add some unfamiliar features to our
script. First, click on the “+ Add Else” button,
which appears below your “If” clause.

10. Identify the “+ Add new script” button that is
immediately under the word “Else” and slightly
indented. Click on that button.
11. A familiar popup window will open. Click on
“Move” at the top of the window.
12. Using dropdown menus, build the command

“Move object object player to object “Front Hall.”
13. Identify the “+Add new script” button that

appears immediately under the command that

 456

you just created. Click on that button.
14. Click on “OK.” Then fill in the “Print” box that

appears with a message like, “Congratulations!
You've finished the story.

15. Press the “+Add new script” button that
appears below your “Print” statement. A familiar
popup window will open.

16. Click on the “Game State” button that
appears along the left side of the popup
window. Then choose “Finish the game” and
click on OK.

17. Save your story and try it out. You should be
able to reach the end of the story.

A Further Challenge

Implement the front door. There's a way to do this
sort of implementation in the Quest documentation at
http://docs.textadventures.co.uk/quest/tutorial/using_loc
kable_exits.html. However, you probably don't need a
fully-implemented door for our story.

http://docs.textadventures.co.uk/quest/tutorial/using_lockable_exits.html
http://docs.textadventures.co.uk/quest/tutorial/using_lockable_exits.html

 457

Chapter 27 – Writing Interactive Fiction With
Inform 7

 Inform 7 is an extremely powerful tool for writing
interactive stories. Unlike similar tools, Inform 7 uses a
form of "natural language." In other words, it allows a
writer to create a work of interactive fiction by writing
somewhat normal English sentences. However, the
writer must follow a rather strict set of rules in creating
sentences that will really lead to an interactive story.

I. Set Up Your Project
 A. Start Inform 7.
 B. From the list of choices that appears, choose
 "Start a New Project."
 C. Choose the directory for your project by clicking
 on the button with three dots on it. This button
 appears on the right side of your screen.
 D. From the list of drives and directories that
 appears, choose the directory you want to use to
 store your project, and then click on OK.
 E. In the appropriate box, type the name of your
 project, which should be the title of your interactive
 story.
 F. In the appropriate box, type the name of the
 author. This will be your name. Do not include any
 punctuation in your name.
 G. Click on "Create."
 H. A screen with two windows will appear. In the left

 458

 window, you'll see the title and author of your story.
 You'll be typing your source code in this window.
 Your source code will describe your story in a way
 that Inform 7 can understand. In the right window,
 for now, you'll see a list of chapters that are included
 in the documentation for Inform 7.
 I. Near the top of your screen, you'll see two boxes
 with magnifying classes in them. These are search
 boxes, one for searching through your source code
 and the other for searching through Inform's
 documentation. Use the documentation search box
 to find answers to your questions about Inform.

II. Create your First Room
 A. In interactive fiction, a "room" can be any
 location, outdoors or indoors.
 B. Under the title and author, in the left window,
 leave a blank line, so that you can see where your
 story really begins. Then type the name of your

first room, followed by this phrase:
 is a room.
C. In quotation marks, right after the sentence that
names your room, type a good description for your
room. The quotation marks tell Inform to display text
on the computer's screen, for the reader to see.
Your source code should now look something like
this:

 459

"A-221" by Brendan Desilets

A-221 is a room. "A-221 is a fairly drab

classroom, with twenty-four student desks

and a like number of computers. It sports

at least ten teacher-made signs about

grammar and literature and one long,

commercial poster. A filing cabinet is

the room's most prominent storage unit."

III. Compile Your Story
 A. Compiling is changing your source code into a
 working interactive story. If you have completed the
 steps outlined above, your story can now be
 compiled, though the player/character won't be able
 to do much, as yet.
 B. To compile your story, press the "Go" button at
 the top of your screen. After a few seconds, if the
 story compiles correctly, you will see the description
 of your first room in the window on the right side of
 your screen. If the story does not compile correctly,
 Inform 7 will try to tell you why it did not compile.
 C. If your story does not compile, Inform will use a
 little curved arrow to show where the mistake in your
 code seems to be. Click on the arrow to see what
 you need to fix.

IV. Create a Second Room

 460

 A. Now, you can create a second room that
 connects to your first room. Begin by naming your
 second room with a sentence like this one:

 The Hallway is a room.

 B. Now, add a sentence that shows how the two
 rooms connect, such as:

 It is east of A-221.

 C. In quotation marks, add the description of your
 new room. The source code for your story should
 now look something like this:

"A-221" by Brendan Desilets

A-221 is a room. "A-221 is a fairly drab

classroom, with twenty-four student desks

and a like number of computers. It sports

at least ten teacher-made signs about

grammar and literature and one long,

commercial poster. A filing cabinet is

the room's most prominent storage unit."

The Hallway is a room. It is east of A-

221. "This is an ordinary school hallway.

Room A-221 is to the west. You can't

think of any reason you would want to go

 461

in any other direction right now."

V. Compile Your Story a Second Time
 A. Press the "Go" button to compile your story
 again.
 B. Once again, after a few seconds, if the story
 compiles successfully, you will see the story running
 in the window on the right side of your screen. If the
 story does not compile, Inform will try to tell you why
 it did not compile, so that you can fix the source
 code.
 C. Once your story with two rooms compiles, the
 player character will be able to move between the
 rooms.

VI. Create Your First Object
 A. Actually, the rooms you have already created are
 objects of a sort. Now, you'll create an object that
 can be picked up and carried.
 B. After leaving a line space for easier reading, type
 the name of your object, followed by

 is in A-221.

 C. Then, if, for example, the object is a key, type:

 The description of the key is

 D. In quotation marks, type the description of your

 462

 object. The source code for your object should now
 look something like this:

 The key is in A-221. The description of the key
 is "An ordinary brass key."

 E. Compile your story once again. The
 player/character should now be able to pick up the
 object you created.

VII. Create Your First Container
 A. Inform makes it easy to create objects that can
 contain other objects.
 B. Inform also makes it easy to create scenery. The
 player-character cannot take a piece of scenery.
 C. In this example, we will create a closed, locked
 container called the filing cabinet. Here is the source
 code for the filing cabinet:

The filing cabinet is scenery in A-

221. It is a closed openable

container. It is locked and lockable.

"This filing cabinet is designed to

store and organize all sorts of

papers, but it could hold lots of

other things, too."

 D. In order to make the key unlock the filing cabinet,
 we add a sentence to the source code for the key.

 463

 This new sentence is:

 The key unlocks the filing cabinet.

 E. Our source code for the key now looks like this:

 The key is in A-221. The key

unlocks the filing cabinet. The

description of the key is "An ordinary

brass key."

VIII. Create Your First Rule
 A. A rule is a way of telling Inform about something
 that you want to happen, under certain conditions.
 The statement of the conditions ends with a colon.
 B. Here is an example rule for our story. This rule
 uses the word "say," which tells the computer to
 show some text to the player. This rule applies
 only when the story begins. Notice how this rule
 uses double quotation marks (the usual kind) and
 single quotation marks.

When play begins: say "Oh, no! You've

lost your red English binder. But here

comes your teacher. Perhaps he's seen it.

 'Maybe,' he says. 'I just locked a

binder in the filing cabinet in Room A-

221. See if it's yours. You'll have to

find the key first, though. I'm not quite

 464

sure where I left it.'

 You find your way to A-221 to begin

the search."

IX. Create Another Object, the Binder
 A. If the player-character is going to be able to find
 the missing binder, we must "implement" the binder.
 In other words, we have to create it as an object.
 B. Here's some source code that creates the binder
 and places it inside the locked filing cabinet:

The binder is in the filing cabinet. The

description is "The red English binder

that you lost recently. You've been

looking for it everywhere."

 C. Remember to compile your story frequently, to
 check for any problems.

X. Create a Rule to End the Story
 A. Now, let's create a rule that ends the story in
 victory when the player/character gets the binder.
 Every turn, this rule will check to see if the
 player-character has the binder.
 B. Here's the source code for this rule:

 An every turn rule:

 if the player is carrying the

 binder, end the story saying

 465

 “Congratulations! You've won.”

Here is the complete source code of our story so far:
__

"A-221" by Brendan Desilets

When play begins: say "Oh, no! You've

lost your red English binder. But here

comes your teacher. Perhaps he's seen it.

'Maybe,' he says. 'I just locked a binder

in the filing cabinet in Room A-221. See

if it's yours. You'll have to find the

key first, though. I'm not quite sure

where I left it.'

You find your way to A-221 to begin the

search."

A-221 is a room. "A-221 is a fairly drab

classroom, with twenty-four student desks

and a like number of computers. It sports

at least ten teacher-made signs about

grammar and literature and one long,

commercial poster. A filing cabinet is

the room's most prominent storage unit."

The Hallway is a room. It is east of A-

221. "This is an ordinary school hallway.

Room A-221 is to the west. You can't

 466

think of any reason you would want to go

in any other direction right now."

The key is in A-221. The key unlocks the

filing cabinet. The description of the

key is "An ordinary brass key."

The filing cabinet is scenery in A-221.

It is a closed openable container. It is

locked and lockable. "This filing cabinet

is designed to store and organize all

sorts of papers, but it could hold lots

of other things, too."

The binder is in the filing cabinet. The

description is "The red English binder

that you lost recently. You've been

looking for it everywhere."

An every turn rule:

if the player is carrying the binder:

end the story saying "Congratulations!

You've won!"

It is now possible to read this story to its easy end.

XI. Create Your First Character (Other Than the
Player/Character)
 A. Inform allows for the easy creation of characters.

 467

 A male character is called a man and a female
 character is called a woman, regardless
 of the character's age or gender identification.
 B. Here is the source code for a character:

Jeff is man in A-221. The description of

Jeff is "A sixth grader, wearing a

baseball shirt.”

 C. Using brackets, we can add something special to
 Jeff’s description by creating a condition, or an "if,"
 like this:

Jeff is a man in A-221. The description

of Jeff is "A sixth grader, wearing a

baseball shirt. [if the key is carried by

Jeff] He is carrying a key." [end if]

XII. Create Your First "Instead" Rule
 A. The real creativity in writing interactive fiction
 happens when we change what Inform ordinarily
 does. For example, if the player-character attacks
 someone, Inform usually responds, "Violence isn't
 the answer to this one."
 B. If, instead, we want the player-character to lose if
 he or she attacks someone, we can make an
 "Instead" rule like this one:

Instead of attacking Jeff:

 468

say "You have been suspended from school

for violent behavior."; end the story

saying "And you have failed to recover

your binder."

 C. Notice how we use the semicolon (;) to separate
 instructions we are giving to Inform.

XIII. Create More "Instead" Rules
 A. "Instead" rules can be used for many purposes.
 For example, we can use them for conversation with
 characters.
 B. To enable our character Jeff to talk about the key,
 we could use this code:

Instead of asking Jeff about "the key":

say "It's the key to the filing cabinet."

 C. In case the player wants to "ask Jeff about key,"
 (leaving out the word "the") we can add this code:

Instead of asking Jeff about "key": say

"It's the key to the filing cabinet."

 D. We can use an "instead" rule to get Jeff to take
 the key if we offer it to him, using this code:

 Instead of giving the key to Jeff:

 say "Now Jeff has the key.";

 469

 move the key to Jeff.

 E. To get Jeff to give the key to the player, if asked,
 we could add:

 Instead of asking Jeff for the key:

 say "Now you have the key.";

 move the key to the player.

XIV. Scoring
 A. You may have noticed that Inform seems to be
 trying to keep score in our sample story.
 B. Since scoring is probably not appropriate for our
 brief tale, let's add this to our source code:

 Use no scoring.

XV. Adding a Surprise
 A. Suppose that we want to add a surprise to the
 end of the game. When the player takes the binder,
 he or she will find a homework
 pass under it. The player will not see the pass until
he or she takes the binder.
 B. First, let's implement the pass. Notice that, for
 now, the pass will not
 be in either of the story's rooms.

The homework pass is a thing. The

description is "A special pass, signed by

 470

your teacher, that allows you to skip a

homework assignment."

 C. Now, we’ll make an "instead" rule to describe
 what happens when the player takes the binder.

Instead of taking the binder: say "As you

take the binder, you find that, under it,

is a homework pass, made out to you.";

move the pass to the cabinet; move the

binder to the player.

 D. Now, let's change our "every turn" rule, so that
 the game ends when the player takes the pass.

An every turn rule:

if the player is carrying the pass:

end the story saying "Congratulations!

You've won!"

XVI. Implementing
 A. There's lots more to implement, even in this very
 brief example.
 B. On your own, try implementing the posters and
 desks in Room-A221.
__

Here's the source code of our example story, so far.

 471

"A-221" by Brendan Desilets

Use no scoring.

When play begins: say "Oh, no! You've

lost your red English binder. But here

comes your teacher. Perhaps he's seen it.

'Maybe,' he says. 'I just locked a binder

in the filing cabinet in Room A-221. See

if it's yours. You'll have to find the

key first, though. I'm not quite sure

where I left it.'

You find your way to A-221 to begin the

search."

A-221 is a room. "A-221 is a fairly drab

classroom, with twenty-four student desks

and a like number of computers. It sports

at least ten teacher-made signs about

grammar and literature and one long,

commercial poster. A filing cabinet is

the room's most prominent storage unit."

The Hallway is a room. It is east of A-

221. "This is an ordinary school hallway.

Room A-221 is to the west. You can't

think of any reason you would want to go

in any other direction right now."

 472

The key is in A-221. The key unlocks the

filing cabinet. The description of the

key is "An ordinary brass key."

The filing cabinet is scenery in A-221.

It is a closed openable container. It is

locked and lockable. "This filing cabinet

is designed to store and organize all

sorts of papers, but it could hold lots

of other things, too."

The binder is in the filing cabinet. The

description is "The red English binder

that you lost recently. You've been

looking for it everywhere."

Jeff is man in A-221. The description of

Jeff is "A sixth grader, wearing a

baseball shirt. [if the key is carried by

Jeff]

He is carrying a key.” [end if]

Instead of attacking Jeff: say "You have

been suspended from school for violent

behavior."; end the game saying "And you

have failed to recover your binder."

Instead of asking Jeff about “the key”:

say “It's the key to the filing cabinet.”

 473

Instead of asking Jeff about “key”: say

“It's the key to the filing cabinet.”

Instead of giving the key to Jeff: say

"Now Jeff has the key."; move the key to

Jeff.

Instead of asking Jeff for the key: say

"Now you have the key."; move the key to

the player.

The homework pass is a thing. The

description is "A special pass, signed by

your teacher, that allows you to skip a

homework assignment."

Instead of taking the binder: say "As you

take the binder, you find that, under it,

is a homework pass, made out to you.";

move the pass to the cabinet; move the

binder to the player.

An every turn rule: if the player is

carrying the pass, end the story saying

"Congratulations! You've won!"

XVII. Create Your First Value
 A. A value is a quality, or "property," that changes.

 474

 Actually we have already used values in our simple
 story. For example, at the start of the story, our filing
 cabinet is closed and locked, but, later, it becomes
 unlocked and open. We didn't have to do anything
 special to set up these values because Inform
 already knew about closed and locked containers.
 B. However, we can set up our own values or
 variables. For instance, we can set up a value called
 "mood." We can add that mood applies to people.
 And we can set up as many moods as we
 want. For now, let's settle for "unhappy" and
 "pleased." Let's set Jeff's opening mood as
 "unhappy."
 C. Here's the source code we should add:

Mood is a kind of value. The moods are

unhappy and pleased. People have mood.

The mood of Jeff is unhappy.

XVIII. Use the "Mood" Value in Your Story

 A. What can we do with values? Actually, values are
 extremely powerful, and we can do a great deal with
 them. Let's start by including Jeff's mood in his
 description, changing the description to read as
 follows:

Jeff is man in A-221. The description of

Jeff is "A sixth grader, wearing a

baseball shirt. [if the key is carried by

 475

Jeff] He is carrying a key. [end if] Jeff

looks [the mood of Jeff]."

 B. Now, let's invent a way to change Jeff's mood.
 Suppose that we want the player to bribe Jeff in
 order to get the key from him. We can use this
 source code to create a coin that the player can
 use as a bribe:

The coin is a thing. The player carries

the coin. The description of the coin is

"A typical piece of currency -- worth

something to most people."

 C. Now, let's create an instead rule that allows the
 player to change Jeff's mood by giving him the coin.
 Here's the source code:

Instead of giving the coin to Jeff: move

the coin to Jeff; now Jeff is pleased;

say "Jeff looks very pleased."

 D. Next, let's create two instead rules that force the
 player to change Jeff's mood before the key can
 change hands. The source code follows, but it's a
 little complicated:

Instead of asking Jeff for the key when

Jeff is unhappy: say "Jeff refuses to

 476

give the key, but points to the coin

you're carrying.";

Instead of asking Jeff for the key when

Jeff is pleased: say "Now you have the

key."; move the key to the player.

Here's the source code for our example story.
__

"A-221" by Brendan Desilets

Use no scoring.

When play begins: say "Oh, no! You've

lost your red English binder. But here

comes your teacher. Perhaps he's seen it.

'Maybe,' he says. 'I just locked a binder

in the filing cabinet in Room A-221. See

if it's yours. You'll have to find the

key first, though. I'm not quite sure

where I left it.'

You find your way to A-221 to begin the

search."

A-221 is a room. "A-221 is a fairly drab

classroom, with twenty-four student desks

and a like number of computers. It sports

 477

at least ten teacher-made signs about

grammar and literature and one long,

commercial poster. A filing cabinet is

the room's most prominent storage unit."

The Hallway is a room. It is east of A-

221. "This is an ordinary school hallway.

Room A-221 is to the west. You can't

think of any reason you would want to go

in any other direction right now."

The key is in A-221. The key unlocks the

filing cabinet. The description of the

key is "An ordinary brass key." Jeff

carries the key.

The filing cabinet is scenery in A-221.

It is a closed openable container. It is

locked and lockable. "This filing cabinet

is designed to store and organize all

sorts of papers, but it could hold lots

of other things, too."

The binder is in the filing cabinet. The

description is "The red English binder

that you lost recently. You've been

looking for it everywhere."

The coin is a thing. The player carries

 478

the coin. The description of the coin is

"A typical piece of currency-- worth

something to most people."

Mood is a kind of value. The moods are

unhappy and pleased. People have mood.

The mood of Jeff is unhappy.

Jeff is man in A-221. The description of

Jeff is "A sixth grader, wearing a

baseball shirt. [if the key is carried by

Jeff] He is carrying a key [end if]. Jeff

looks [the mood of Jeff]."

Instead of attacking Jeff: say "You have

been suspended from school for violent

behavior."; end the story saying "And you

have failed to recover your binder."

Instead of asking Jeff about “the key”:

say “It's the key to the filing cabinet.”

Instead of asking Jeff about “key”: say

“It's the key to the filing cabinet.”

Instead of giving the key to Jeff: say

"Now Jeff has the key."; move the key to

Jeff.

 479

Instead of asking Jeff for the key when

Jeff is unhappy: say "Jeff refuses to

give the key, but points to the coin

you're carrying.";

Instead of asking Jeff for the key when

Jeff is pleased: say "Now you have the

key."; move the key to the player.

Instead of giving the coin to Jeff: move

the coin to Jeff; now Jeff is pleased;

say "Jeff looks very pleased."

The homework pass is a thing. The

description is "A special pass, signed by

your teacher, that allows you to skip a

homework assignment."

Instead of taking the binder: say "As you

take the binder, you find that, under it,

is a homework pass, made out to you.";

move the pass to the cabinet; move the

binder to the player.

An every turn rule: if the player is

carrying the pass,

end the story saying "Congratulations!

You've won!"

 480

XIX. Creating Synonyms
 A. In any kind of writing, it's important for the writer
 to be considerate of the reader. Since interactive
 fiction is a challenging form of writing and reading,
 it's especially vital for the writer to think about the
 reader's needs.
 B. One way to help a reader is to make sure that he
 or she can use synonyms for the objects that we
 implement. Right now, as our story works, the
 reader can type "Give the coin to Jeff," and all will
 go well. However, if the reader types, "Give the coin
 to the boy," the story fails to recognize the word
 "boy."
 C. To create a synonym for Jeff, we would add the
 following line to Jeff's description:

 Understand "boy" as Jeff.

Here's the final version of the story. Notice that we've
add a couple of synonyms for the binder.
__

"A-221" by Brendan Desilets

Use no scoring.

When play begins: say "Oh, no! You've

lost your red English binder. But here

 481

comes your teacher. Perhaps he's seen it.

'Maybe,' he says. 'I just locked a binder

in the filing cabinet in Room A-221. See

if it's yours. You'll have to find the

key first, though. I'm not quite sure

where I left it.'

You find your way to A-221 to begin the

search."

A-221 is a room. "A-221 is a fairly drab

classroom, with twenty-four student desks

and a like number of computers. It sports

at least ten teacher-made signs about

grammar and literature and one long,

commercial poster. A filing cabinet is

the room's most prominent storage unit."

The Hallway is a room. It is east of A-

221. "This is an ordinary school hallway.

Room A-221 is to the west. You can't

think of any reason you would want to go

in any other direction right now."

Jeff carries the key. The key unlocks the

filing cabinet. The description of the

key is "An ordinary brass key."

The filing cabinet is scenery in A-221.

It is a closed openable container. It is

 482

locked and lockable. "This filing cabinet

is designed to store and organize all

sorts of papers, but it could hold lots

of other things, too."

The binder is in the filing cabinet. The

description is "The red English binder

that you lost recently. You've been

looking for it everywhere." Understand

"notebook" as the binder. Understand

"book" as the binder.

The coin is a thing. The player carries

the coin. The description of the coin is

"A typical piece of currency-- worth

something to most people."

Mood is a kind of value. The moods are

unhappy and pleased. People have mood.

The mood of Jeff is unhappy.

Jeff is man in A-221. The description of

Jeff is "A sixth grader, wearing a

baseball shirt. [if the key is carried by

Jeff] He is carrying a key. [end if] Jeff

looks [the mood of Jeff]." Understand

"boy" as Jeff.

Instead of attacking Jeff:

 483

say "You have been suspended from school

for violent behavior.";

end the game saying "And you have failed

to recover your binder."

Instead of asking Jeff about “the key”:

say “It's the key to the filing cabinet.”

Instead of asking Jeff about “key”:

say “It's the key to the filing cabinet.”

Instead of giving the key to Jeff:

say "Now Jeff has the key.";

move the key to Jeff.

Instead of asking Jeff for the key when

Jeff is unhappy:

say "Jeff refuses to give the key, but

points to the coin you're

carrying.";

Instead of asking Jeff for the key when

Jeff is pleased:

say "Now you have the key.";

move the key to the player.

Instead of giving the coin to Jeff:

move the coin to Jeff;

now Jeff is pleased;

 484

say "Jeff looks very pleased."

The homework pass is a thing. The

description is "A special pass, signed by

your teacher, that allows you to skip a

homework assignment."

Instead of taking the binder:

say "As you take the binder, you find

that, under it, is a homework pass, made

out to you.";

move the pass to the cabinet;

move the binder to the player.

An every turn rule:

if the player is carrying the pass,

end the story saying "Congratulations!

You've won.”

 485

Chapter 28 – Getting Interactive Fiction

 Fortunately, interactive fiction is inexpensive and
fairly easy to find. Most IF stories that have been written
since 1990 are free of charge and available via the
Web, especially through the Interactive Fiction
Database (http://ifdb.tads.org). The IF database also
offers links for running many stories in a Web browser,
and it presents a good set of instructions for getting the
same stories running on your local computer.

 Running stories on a local computer often works
more smoothly than reading the same stories online,
especially when it comes to saving your progress.
Sometimes, saving where you've left off goes very well
in an online reading, but often it doesn't. Also, reading
stories online doesn't work at all for some stories, and it
can leave out some elements, like pictures and sound.

 So, getting the stories to run on local PC's and
Macs and Linux computers is usually a good idea, but
it's also a multi-step process.

 To run an interactive fiction on a particular
computer, you usually need two pieces of software.
One piece of software is called an interpreter. The
interpreter you need for a particular story depends
mainly on two factors, the kind of computer you have
and the tool the author used to create the story.

http://ifdb.tads.org/

 486

Interpreters

 Each Internet-distributed story recommended on
this site was created with one of five tools. These tools
are called Inform, TADS, Hugo, Quest, and Adrift.
Authors who write with Inform sometimes create stories
in a format called z-code. Other Inform writers use an
extension called Glulx, if they want to create very large
stories or stories with multimedia elements. Interpreters
for stories made with all of these tools are available for
just about any kind of computer, even older, more
unusual ones. If you have one Inform interpreter, one
Glulx interpreter, one TADS interpreter, one Hugo
interpreter, and one Adrift interpreter on your computer,
you have enough interpreters to run almost all the
stories recommended on this site.

 Quest stories are a little different. They're often read
online. Their only offline interpreter is the same Quest
program that's used to write the stories. This program
runs only on Windows. Beyond these five authoring
systems, there are other IF-development systems, with
their own interpreters, but, once you get the hang of
using one interpreter, you'll probably be able to handle
them all.

 There's an excellent list of interpreters at
http://www.ifwiki.org/index.php/Interpreter

http://www.ifwiki.org/index.php/Interpreter

 487

 You can simplify the interpreter-gathering process
by using a tool that combines a number of interpreters
into one program. The most popular of these is
Gargoyle, which runs on Windows, Mac, and Linux. The
Linux version is sometimes called “gargoyle-free.” Many
Mac users like two other multi-interpreter programs,
Zoom and Spatterlight. These multi-interpreter systems
are fine for most users, though they make it a bit tricky
to change font sizes and styles.

 In addition, they will not easily run one of the highly-
recommended stories in this book, Arthur: the Quest for
Excalibur. To read Arthur, on Windows, you'll need an
easily-installed interpreter called Windows Frotz. Frotz
is also available for Linux and Mac, though the Mac
version is very difficult to install successfully.

 488

 Fortunately, Mac users have another option. They
can read Arthur with the Zoom interpreter. First, though,
they have to change the name of the file called
“ARTHUR.ZIP” to “ARTHUR.Z8.”

 You can download interpreters from the IF Archive.
The IF Database links to them, too.

 Google Play and iTunes offer a few interpreters for
IOS and Android.

Story Files

 To run a story, you need, in addition to an
interpreter, a story file. The story file you need depends
only on which story you want to run – it doesn’t matter

 489

what kind of computer you have.

 So, if, for example you want to read the TADS game
The One That Got Away, using a Macintosh, you need
the right story file and the right interpreter, which, in this
case would be a TADS interpreter for the Macintosh, or
a multi-interpreter program for the MAC. Gargoyle,
Zoom, and Spatterlight will all work fine.

Where Can I Get These Things, Again?

 You can find links to plenty of interpreters and story
files at the Interactive Fiction Archive and the Interactive
Diction Database. Downloading, at present, is usually
just a matter of left-clicking or right-clicking on a link.
Downloaded files are often compressed and/or
archived.

 Newer computer operating systems make
decompressing files quite easy, by showing compressed
files as folders that can be opened like other folders or
extracted to show their contents.

If For Sale

 A few contemporary works of IF are commercial
products, always reasonably priced. Textfyre.com sells
Jack Toresal and the Secret Letter and The Shadow in
the Cathedral. Several works of IF are for sale at

 490

iTunes and Google Play.

 Things get a bit trickier when you're looking for
classic works from the 1980's. Most of the best works
from this era were published by a company called
Infocom. You can buy most of Infocom stories, (thirty-
three, to be exact) for both PC and Macintosh
computers, in one magnificent collection called The
Masterpieces of Infocom. However, Masterpieces has
become quite difficult to find in the last few years, and
since it dates from the days of DOS, it doesn't always
play well with modern computers. Fortunately, most of
the story files from Infocom, the ones that have the
extension .dat, will run on multi-format interpreters like
Gargoyle and Spatterlight. The Infocom stories that
have the .zip extension (Arthur, for example) will run on
the z-code interpreter called “Frotz.”

 491

 Masterpieces, along with less comprehensive (and
less pricey) collections like The Lost Treasures of
Infocom, is often available at ebay and at Amazon.com.
Just search ebay or Amazon, using “Infocom” as your
search term. In early 2015, the lowest available price
for Masterpieces seems to be $70.00 US. This sounds
pretty expensive, but the collection includes more than
thirty full-length stories. And some of them really are
masterpieces!

Abandonware

 It is also possible, though not really legal, to

 492

download all the Infocom stories from the Web, under
the concept of abondonware. Those who offer the
stories in this way often include disclaimers like this
one, from Achim J. Latz:

“Copyright by Infocom, Inc. Provided for non-
commercial use only, with the sole intent of making
information available that would otherwise be lost.
To whomever presently holds the copyright to the
information contained in this page: if you think the
existence of this page violates your copyright, please
complain to achim@latz.org and this page will be
removed.”

 One site that offers the Infocom stories in this way is
called My Abandonware. This site urges its users to try
to purchase the software it offers, before downloading it
for free. Why would one do this? In addition to staying
within the law, a person who downloads from My
Abandonware will probably be able to run the story on a
modern computer more easily.

 Most abandonware sites are oriented toward
Windows and DOS, but, in the case of Infocom stories,
the story files will work on all kinds of computers. DOS
programs, in general, can run on practically all modern
computers, using the software emulator called DOSBox.

Raiders of the Lost Software

mailto:achim@latz.org
http://www.myabandonware.com/

 493

 People who don't like obtaining software illegally
have often mused, “Wouldn't it be great if a publisher
like Activision, which now owns the Infocom stories,
could just sell them for five dollars apiece? Acitivision,
which now makes no money at all on the Infocom titles,
would earn a few dollars, and readers would be happy,
too.”

 Yes, it would be great if Activision had a such a way
to act on its own self-interest, but, in the current era of
app stores and repositories, the software publishers
aleady have an easy way to sell their back titles for a
few dollars each.

 Why don't they? Perhaps they're just a bit slow to
react. By the time you read this, maybe you'll be able to
buy Zork I, tricked out for your great new phone or
laptop, for a sum of money that you'll never miss.

 494

Notes and References

Chapter 1 – What is Interactive Fiction?

 For discussions of the precise nature of interactive
fiction, see IF Theory Reader, (2011) edited by Kevin
Jackson-Mead and Robinson Wheeler
(http://pdf.textfiles.com/books/iftheorybook.pdf) , which
includes “Characterizing, If Not Defining Interactive
Fiction,” by Andrew Plotkin. Of equal merit is Twisty
Little Passages by Nick Montfort (2005,
http://ebook.stepor.com/book/twisty-little-passages-an-
approach-to-interactive-fiction-40473-pdf.html.)

 In recent years, choice-based, hypertext stories,
which do not include parsers, have been welcome in the
most prominent interactive fiction competition, an event
that ends in mid November. Some of the non-parser
stories have done well, finishing as high as second.
However, parser-based stories and hypertext narratives
are really very different from one another. In 2014, a
prominent IF writer, Carolyn VanEseltine, initiated
“ParserComp,” for stories with parsers. This new “comp”
was a great success, drawing some fine new games.

Chapter 2 – The Pain and Process of the Parser

 In the 1980's, a company called Infocom published
more than thirty commercial works of interactive fiction,

http://ebook.stepor.com/book/twisty-little-passages-an-approach-to-interactive-fiction-40473-pdf.html
http://ebook.stepor.com/book/twisty-little-passages-an-approach-to-interactive-fiction-40473-pdf.html

 495

some of them classics of the medium. The history of the
company, in varying degrees of depth, is at
http://web.mit.edu/6.933/www/Fall2000/infocom/. A
supplement to the documentary film Get Lamp (2011)
tells the Infocom story in an especially dramatic way.
This supplement is not available on YouTube, but it can
be purchased, as part of the DVD version of the
documentary, at http://www.getlamp.com.

 Emily Short has commented on the “false promise”
of the IF parser, and on many other issues, theoretical
and otherwise, in her remarkably insightful blog, “Emily
Short's Interactive Storytelling”
(https://emshort.wordpress.com/).

 Jason MacIntosh's blog, which includes his videos,
is “The Gameshelf”
(http://gameshelf.jmac.org/essays/jmac-on-games/).

 Andrew Plotkin makes his comments on the parser
in the documentary film Get Lamp, directed by Jason
Scott (2010,
https://www.youtube.com/watch?v=LRhbcDzbGSU).

Chapter 3 – Interactive Fiction and Critical Thinking

 As noted in the chapter's text, Robert Sternberg's
Intelligence Applied informs much of this chapter.
However, the chapter owes just as much to the work of

http://web.mit.edu/6.933/www/Fall2000/infocom/
https://emshort.wordpress.com/
https://www.youtube.com/watch?v=LRhbcDzbGSU

 496

Robert Swartz of the National Center for Teaching
Thinking (http://www.nctt.net/).

Chapter 4 – Interactive Fiction and the Reading Process

 David F. Lancy and Bernard L. Hayes offer further
thoughts on the motivational aspects of IF in "Interactive
Fiction and the Reluctant Reader." The article appeared
in the English Journal, in November of 1988.

 Mark Engleberg writes about how IF can motivate
students in “IF for Home-Schooled Students” at
http://inform7.com/news/2009/03/16/mark-engelberg-
on-if-for-homeschooled-students/.

Chapter 5 – Building Fluency With Interactive Fiction

 Laura Robb offers a balanced discussion of the
advantages of reading fluency in Teaching Reading in
Middle School: a Strategic Approach to Teaching
Reading That Improves Comprehension and Thinking
(2000).

 The Report of the National Reading Panel (2000)
proved controversial in some of its claims and results,
including the widespread use of time-consuming testing
for fluency. Still, the report does offer worthwhile

http://www.nctt.net/
http://inform7.com/news/2009/03/16/mark-engelberg-on-if-for-homeschooled-students/
http://inform7.com/news/2009/03/16/mark-engelberg-on-if-for-homeschooled-students/

 497

suggestions for building fluency.

 Timothy Rasinski and Nancy Padak stress the role
of public performance in building fluency in “Fluency
Beyond the Primary.” The article appeared in Voices
from the Middle, September 2005. Rasinski writes about
coaching readers for fluency in his book, The Fluent
Reader: Oral Reading Strategies for Building Word
Recognition, Fluency and Comprehension (2003).

 Nick Montfort describes the way readers of
interactive fiction feel that they are, to some extent,
crafting IF stories in his seminal book Twisty Little
Passages (2003).

Chapter 6 – Creating Interactive Fiction With Adrift

 Lively debates about the merits of the various IF
authoring systems continue on the IF Forum and
elsewhere. It’s clear, though, that, since 1990 or so, the
best parser-based IF stories have come from the TADS
and Inform communities. These languages are plainly
the most mature and powerful tools we have. Adrift and
Quest authors have produced some fine stories, too,
however. The PK Girl by Robert Goodwin, Helen
Travillion, Nanami Nekono, and Oya-G took sixth place
in the fall 2002 Interactive Fiction Competition, thus
announcing the Adrift had truly arrived. In 2014, a

 498

Quest story did even better, as Jacqueline, Jungle
Queen! by Steph Cherrywell finished third.

 Since its arrival in 2006, Inform 7 has emerged as
the choice of a great many, if not a majority of, serious
parser jockeys. Inform 7 stories have won the fall IF
competition in every year but one since it appeared on
the scene. The exception, Lost Pig, was written in
Inform 6. From 1995 to 2014, all but two of the winners
of the fall IF Competition were written with Inform 6 or 7.
The other two were TADS stories.

 Adrift, the principal topic of this chapter is a truly
admirable piece of programming. It’s solidly coded
(though not without bugs), and, in my experience, it
really is the fastest way to get a decent IF story up and
running. However, Adrift Developer is Windows-only,
and that’s a severe limitation for some of us. Adrift
interpreters, on the other hand, are available for all the
widely-used full-scale operating systems, so you can
read Adrift stories on most computers.

 The most popular authoring system for choice-
based IF is called “Twine.” Twine was developed by
Chris Klimas in 2009, and it’s available, free of charge,
at http://twinery.org/.

Chapter 7 – Creating Interactive Fiction With Quest on

 499

the Web

 In some ways, Quest fulfills the dreams of many
teachers of interactive fiction. It’s easy to use, it boasts
a good library of completed games, it can produce both
choice-base and parser-based stories, it has a Web
version, and it boasts a very active presence among
educators, especially in the United Kingdom. Its
developers and supporters, especially British educator
Christian Still, deserve great credit for the leadership
that they’ve provided.

 Still, in my own experience, Quest does not quite
measure up to Adrift in its maturity and stability.

Chapter 8 – Inform 7 and the Writing Process

 Seymour Papert’s Mindstorms is probably the most
important book ever on computers in education. Though
its advocacy of the Logo programming language may
seem naïve in the twenty-first century, its argument for a
computer-rich environment and what to do with it are
entirely contemporary. Consider, for instance, the
endless debate about whether or not children should be
taught to program computers. Papert answers this
question in the most rational way possible, by looking at
the precise benefits of programming, not by advocating
or rejecting some particular style of coding.

 500

 My own article, “Logo and Extended Definition”
(Journal of Teaching Writing, Volume 5, Number 1,
1986) applies Papert’s ideas to a typical priority of
secondary-school English teachers.

 Graham Nelson’s announcement of the Inform 7
public beta changed the world, or at least the small part
of the world that teaches children and young adults to
write IF. See “Inform 7: Interactive Fiction from Natural
Language"
(http://groups.google.com/forum/#!topic/rec.arts.int-
fiction/9ZGc8bSbraw).

 Aaron Reed stands as one of the most important of
all IF writers, known especially for his massive and
masterful story Blue Lacuna. He’s also the author of
Creating Interactive Fiction With Inform 7 (2011), which
offers a clear and thorough tutorial on the Inform
language. Reed’s book is a nearly perfect complement
to the hundreds of pages of clear and literate document
that come with Inform 7 (http://inform7.com) itself.

 Gareth Rees is another important writer of IF
stories, who has also produced “must read” essays
about writing interactive fiction. He’s the author of the IF
classic Christminister (1995), and of "Game Design and
Game Analysis” (1995,
http://www.doggysoft.co.uk/inform/write/desgn.html).

http://groups.google.com/forum/#!topic/rec.arts.int-fiction/9ZGc8bSbraw
http://groups.google.com/forum/#!topic/rec.arts.int-fiction/9ZGc8bSbraw
http://www.doggysoft.co.uk/inform/write/desgn.html

 501

Chapter 9 – Why Inform 7?

 Among the most prominent computer languages for
children is Scratch, which, like Logo, has its roots at the
Massachusetts Institute of Technology. Linda Sandvik
describes her work with Scratch and other tools on the
Ubuntu UK Podcast in an “Interview With Linda Sandvik
of Code Club” (June 27, 2013, http://podcast.ubuntu-
uk.org/2013/06/27/s06e18-a-midsummer-nights-
ubuntu/).

Chapter 10 – The Writer’s Self in Interactive Fiction

 Philippa Foot (innocently enough, I suspect)
invented the “Trolley Problem” franchise in an essay
that isn’t mostly about trolley problems at all. The
article’s called "The Problem of Abortion and the
Doctrine of the Double Effect," and you can find it in
Ethical Theory: An Anthology, (2007) edited by Russ
Shafer-Landau. Judith Jarvis-Thompson focused on and
elaborated the trolley theme in several insightful essays,
including "The Trolley Problem" in The Yale Law Journal
94.6 (1985). Numerous subsequent essays have tried to
develop the trolley trope further, often twisting it almost
beyond recognition.

http://podcast.ubuntu-uk.org/2013/06/27/s06e18-a-midsummer-nights-ubuntu/
http://podcast.ubuntu-uk.org/2013/06/27/s06e18-a-midsummer-nights-ubuntu/
http://podcast.ubuntu-uk.org/2013/06/27/s06e18-a-midsummer-nights-ubuntu/

 502

 Roger Giner-Sorolla identfies the problem of
confusing the reader with the player character in his
seminal essay, “Crimes Against Mimesis,” (1997) which
originally appeared, in installments, in the USENET
newsgroup rec.arts.int-fiction. The essay also appears
in the IF Theory Reader, edited by Kevin Jackson-Mead
and J. Robinson Wheeler.

 Graham Nelson’s “Bill of Players’ Rights” is part of
“The Craft of Adventure” (1997). It’s available at
http://www.ifarchive.org/if-archive/programming/general-
discussion/Craft.Of.Adventure.txt.

 Andrew Plotkin comments on common
misunderstandings of the IF parser in the documentary
film, Get Lamp, directed by Jason Scott. Jason’s
interview with Andrew is at
http://archive.org/details/getlamp-aplotkin.

Chapter 11 – Recommended Works of Interactive
Fiction

 The “Top Seventy” that appears in this chapter
includes some stories that are not good choices for
younger students to try on their own. See the comments
on each story for details.

 Most of the stories recommended here can be

http://www.ifarchive.org/if-archive/programming/general-discussion/Craft.Of.Adventure.txt
http://www.ifarchive.org/if-archive/programming/general-discussion/Craft.Of.Adventure.txt
http://archive.org/details/getlamp-aplotkin

 503

easily obtained, free of charge, from the Interactive
Fiction Database, at http://ifdb.tads.org. Just use the
site’s search bar to find a story and the database will
offer a link for downloading, along with instructions for
getting the story to run on your computer. In some
cases, the database will also offer a link for trying the
story online. See Chapter 17 of this book for information
on acquiring stories that are harder to get.

Chapter 12 – An Interactive Classic from the
Commercial Era: Arthur, the Quest for Excalibur

 Arthur, (1989) is the last of the classic Infocom
stories. It was published after Infocom’s ill-fated
acquisition by Activision in 1986. The author of the story,
Bob Bates, along with Mike Verdu, founded Legend
Entertainment in 1989. Legend issued several
interactive fictions in the Infocom tradition, some written
by Infocom veteran Steve Meretsky and others by Bates
himself.

Chapter 13 – An Interactive Classic from the Modern
Era: The Firebird

 The fall Interactive Fiction Competition plays such
an important role in the fostering of IF writing that a
casual observer might think that the IF community must
be extraordinarily competitive. In truth, however, the

http://ifdb.tads.org/

 504

“Comp” is less about winning than about finding an
audience for new interactive fictions. Still, lots of IF
classics have won the competition. Among the best-
remembered and most-appreciated winners are A
Change in the Weather (Andrew Plotkin, 1995),
Photopia (Adam Cadre, 1998), two episodes of the
“Earth and Sky” trilogy (Paul O’Brian, 2002, 2004),
Floatpoint (Emily Short, 2006), Lost Pig (Admiral Jota,
2007), Violet (Jeremy Freese, 2008), and Coloratura
(Lynnea Glasser, 2013).

 But plenty of outstanding stories have entered the
Comp and not quite won. These include David Dyte’s A
Bear’s Night Out, the original Earth and Sky story, Ryan
Veeder and Emily Boegheim’s Robin & Orchid, Mark
and Renee Choba’s History Repeating, Jason
MacIntosh’s The Warbler’s Nest, Leon Lin’s The One
That Got Away, and Nate Cull’s Glowgrass.

 The “Fall Comp” and the other IF competitions are
so important that members of the IF community
sometimes seem surprised when a story like The
Firebird comes along, a really fine piece of work that
might well have won a competition but wasn’t entered.
That surprise can often be a pleasant one, though,
when the story in question turns out to be as good as
The Firebird, or Spider and Web, or Blue Lacuna.

Chapter 14 – An Interactive Fiction Competition Winner:

 505

Winter Wonderland

 Winter Wonderland by Laura Knauth won the fall IF
Comp the year after its most revolutionary winner,
Photopia, dominated the standings. Knauth’s work was
a more quiet winner, but its reputation has developed
over the years. Wonderland’s gently playful spirit and its
gracious characterizations grow on many readers, and
its technically flawless programming makes possible a
wide variety of puzzles. Laura even manages two very
enjoyable mazes, at a time when mazes were very
much out of style. In my experience, students always
love the story.

Chapter 15 – An Interactive Tragedy: Photopia

 What, exactly, is appropriate for kids and
classrooms? It’s hard to say. For a middle school
teacher with my own particular style, it was always
important not to underestimate what students could
handle.

 Photopia was obviously not written for an audience
of children. In its original version, it began with a scene
laced with rather strong profanity, and the story is
extremely sad. Still, with sensitive teaching and a
warning about upcoming episodes from time to time,
Photopia works very well with twelve-year olds.

 506

 Emily Short’s Bronze presents an equally tough
case. This retelling of “Beauty and the Beast” plays
directly to adult interests. It refers to sex in a direct,
though always tasteful, way, and one of its climactic
moments reveals the suicide of one of the Beast’s
victims, a young woman named Yvette who was
pregnant with the Beast’s child.

 Still, the story offers a dark fairy tale that students
can appreciate, though some specific sexual references
and Yvette’s horrific suicide would not work with
children. As a result, I asked the author for permission
to craft a slightly bowdlerized version of the story. She
agreed, and the PG version of Bronze has delighted
and angered many middle school and high school
students. The edited version of the story is at
http://bdesilets.com/if/Bronze.z8.

Chapter 16 – An Interactive Fiction about Middle School
Students: The Enterprise Incidents

 The Enterprise Incidents, though explicitly a
“fantasy” has its roots in a real middle school and in a
real middle school program for undermotivated eighth
graders. The program was called “Venture,” and, in it, a
dozen or so students ran a real business, and went
home with paychecks once per quarter. Venture ran
from 1985 to 2004, and its website is still available at
http://venture.home.comcast.net.

http://bdesilets.com/if/Bronze.z8
http://venture.home.comcast.net/

 507

 The bizarre fashion choices of the story’s “Megan”
character are also real, though they’re harder to believe.

Chapter 17 – Acquiring Interactive Fiction

 I should probably stress, more than I already have,
that interactive fiction is inexpensive, to a degree that is
practically ridiculous. Most of the best stories are flat-out
free, and others, like The Shadow in the Cathedral cost
$5.00 (U.S.) or less. Even the Infocom stories are free,
through several, not-quite-legal abandonware sites. A
perfectly-legal purchase of Masterpieces of Infocom, via
Amazon.com, costs around $70.00, which amounts to
about $2.13 per story.

 508

About the Author

 Brendan Desilets has taught in Massachusetts
schools since 1968, at the middle school, high school,
and university levels. He currently works as an adjunct
professor of English at the University of Massachusetts
at Lowell. Brendan’s resume is available at
http://jgms.home.comcast.net/~jgms/resume.htm.

